Grosimea învelișului de aer al pământului este. Compoziția atmosferei

YouTube enciclopedic

    1 / 5

    ✪ Nava spațială Pământească (Episodul 14) - Atmosferă

    ✪ De ce atmosfera nu a fost trasă în vidul spațiului?

    ✪ Intrarea în atmosfera Pământului a navei spațiale „Soyuz TMA-8”

    ✪ Structura atmosferei, sensul, studiul

    ✪ O. S. Ugolnikov „Atmosfera superioară. Întâlnirea Pământului și a spațiului”

    Subtitrări

Limita atmosferei

Atmosfera este considerată acea zonă din jurul Pământului în care mediu gazos se rotește împreună cu Pământul ca întreg. Atmosfera trece în spațiul interplanetar treptat, în exosferă, începând de la o altitudine de 500-1000 km de suprafața Pământului.

Conform definiției propuse de Federația Internațională a Aviației, granița dintre atmosferă și spațiu este trasată de-a lungul liniei Karmana, situată la o altitudine de aproximativ 100 km, deasupra căreia zborurile aeriene devin complet imposibile. NASA folosește marca de 122 de kilometri (400.000 de picioare) ca limită a atmosferei, unde navetele trec de la manevrarea motorizată la manevrarea aerodinamică.

Proprietăți fizice

Pe lângă gazele enumerate în tabel, atmosfera conține Cl 2 (\displaystyle (\ce (Cl2))) , SO 2 (\displaystyle (\ce (SO2))) , NH 3 (\displaystyle (\ce (NH3))) , CO (\displaystyle ((\ce (CO)))) , O 3 (\displaystyle ((\ce (O3)))) , NU 2 (\displaystyle (\ce (NO2))), hidrocarburi , HCl (\displaystyle (\ce (HCl))) , HF (\displaystyle (\ce (HF))) , HBr (\displaystyle (\ce (HBr))) , HI (\displaystyle ((\ce (HI)))), cupluri Hg (\displaystyle (\ce (Hg))) , I 2 (\displaystyle (\ce (I2))) , Br 2 (\displaystyle (\ce (Br2))), precum și multe alte gaze în cantități mici. În troposferă există în mod constant o cantitate mare de particule solide și lichide în suspensie (aerosol). Cel mai rar gaz din atmosfera Pământului este Rn (\displaystyle (\ce (Rn))) .

Structura atmosferei

stratul limită al atmosferei

Stratul inferior al troposferei (1-2 km grosime), în care starea și proprietățile suprafeței Pământului afectează direct dinamica atmosferei.

troposfera

Limita sa superioară se află la o altitudine de 8-10 km în latitudini polare, 10-12 km în latitudinile temperate și 16-18 km în latitudini tropicale; mai scăzut iarna decât vara.
Stratul principal inferior al atmosferei conține mai mult de 80% din masa totală a aerului atmosferic și aproximativ 90% din toți vaporii de apă prezenți în atmosferă. Turbulența și convecția sunt puternic dezvoltate în troposferă, apar norii, se dezvoltă cicloni și anticicloni. Temperatura scade cu altitudinea cu un gradient vertical mediu de 0,65°/100 metri.

tropopauza

Stratul de tranziție de la troposferă la stratosferă, stratul atmosferei în care încetează scăderea temperaturii odată cu înălțimea.

Stratosferă

Stratul atmosferei situat la o altitudine de 11 până la 50 km. O ușoară modificare a temperaturii în stratul de 11-25 km (stratul inferior al stratosferei) și creșterea acesteia în stratul de 25-40 km de la minus 56,5 la plus 0,8 °C (stratosfera superioară sau regiunea de inversare) sunt tipice. Atinsă o valoare de aproximativ 273 K (aproape 0 °C) la o altitudine de aproximativ 40 km, temperatura rămâne constantă până la o altitudine de aproximativ 55 km. Această regiune de temperatură constantă se numește stratopauză și este granița dintre stratosferă și mezosferă.

Stratopauza

Stratul limită al atmosferei dintre stratosferă și mezosferă. Există un maxim în distribuția verticală a temperaturii (aproximativ 0 °C).

Mezosfera

Termosferă

Limita superioară este de aproximativ 800 km. Temperatura se ridică la altitudini de 200-300 km, unde atinge valori de ordinul a 1500 K, după care rămâne aproape constantă până la altitudini mari. Sub acțiunea radiației solare și a radiației cosmice, aerul este ionizat („lumini polare”) - principalele regiuni ale ionosferei se află în interiorul termosferei. La altitudini de peste 300 km predomină oxigenul atomic. Limita superioară a termosferei este determinată în mare măsură de activitatea curentă a Soarelui. În perioadele de activitate scăzută - de exemplu, în 2008-2009 - există o scădere vizibilă a dimensiunii acestui strat.

Termopauza

Regiunea atmosferei deasupra termosferei. În această regiune, absorbția radiației solare este neglijabilă și temperatura nu se modifică de fapt odată cu înălțimea.

Exosfera (sfera de împrăștiere)

Până la o înălțime de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor în înălțime depinde de masele lor moleculare, concentrația gazelor mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazelor, temperatura scade de la 0 °C în stratosferă la minus 110 °C în mezosferă. Cu toate acestea, energia cinetică a particulelor individuale la altitudini de 200-250 km corespunde unei temperaturi de ~ 150 °C. Peste 200 km, se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3500 km, exosfera trece treptat în așa-numita în apropierea vidului spațial, care este umplut cu particule rare de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz este doar o parte din materia interplanetară. Cealaltă parte este compusă din particule asemănătoare prafului de origine cometă și meteorică. Pe lângă particulele de praf extrem de rarefiate, în acest spațiu pătrunde radiațiile electromagnetice și corpusculare de origine solară și galactică.

Prezentare generală

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera reprezintă aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei.

Pe baza proprietăților electrice din atmosferă, ele emit neutrosferaȘi ionosferă .

În funcție de compoziția gazului din atmosferă, ele emit homosferăȘi heterosferă. heterosferă- aceasta este o zonă în care gravitația afectează separarea gazelor, deoarece amestecarea lor la o astfel de înălțime este neglijabilă. De aici urmează compoziția variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei, numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.

Alte proprietăți ale atmosferei și efecte asupra corpului uman

Deja la o altitudine de 5 km deasupra nivelului mării, o persoană neantrenată dezvoltă foamete de oxigen și, fără adaptare, performanța unei persoane este redusă semnificativ. Aici se termină zona fiziologică a atmosferei. Respirația omului devine imposibilă la o altitudine de 9 km, deși până la aproximativ 115 km atmosfera conține oxigen.

Atmosfera ne oferă oxigenul de care avem nevoie pentru a respira. Cu toate acestea, din cauza scăderii presiunii totale a atmosferei pe măsură ce vă ridicați la o înălțime, presiunea parțială a oxigenului scade în mod corespunzător.

Istoria formării atmosferei

Conform teoriei celei mai comune, atmosfera Pământului a fost în trei compoziții diferite de-a lungul istoriei sale. Inițial, a constat din gaze ușoare (hidrogen și heliu) captate din spațiul interplanetar. Acest așa-zis atmosfera primara. În etapa următoare, activitatea vulcanică activă a dus la saturarea atmosferei cu alte gaze decât hidrogenul (dioxid de carbon, amoniac, vapori de apă). Acesta este cum atmosfera secundara. Această atmosferă era reconfortantă. În plus, procesul de formare a atmosferei a fost determinat de următorii factori:

  • scurgerea gazelor ușoare (hidrogen și heliu) în spațiul interplanetar;
  • reacții chimice care au loc în atmosferă sub influența radiațiilor ultraviolete, a descărcărilor de fulgere și a altor factori.

Treptat, acești factori au dus la formare atmosfera tertiara, caracterizată printr-un conținut mult mai scăzut de hidrogen și un conținut mult mai mare de azot și dioxid de carbon (format ca urmare a reacțiilor chimice din amoniac și hidrocarburi).

Azot

Formarea unei cantități mari de azot se datorează oxidării atmosferei de amoniac-hidrogen de către oxigenul molecular. O 2 (\displaystyle (\ce (O2))), care a început să vină de pe suprafața planetei ca urmare a fotosintezei, începând cu 3 miliarde de ani în urmă. De asemenea, azot N 2 (\displaystyle (\ce (N2))) este eliberat în atmosferă ca urmare a denitrificării nitraților și a altor compuși care conțin azot. Azotul este oxidat de ozon la NU (\displaystyle ((\ce (NU))))în straturile superioare ale atmosferei.

Azot N 2 (\displaystyle (\ce (N2))) intră în reacții numai în condiții specifice (de exemplu, în timpul unei descărcări de fulgere). Oxidarea azotului molecular de către ozon în timpul descărcărilor electrice este utilizată în cantități mici în producția industrială de îngrășăminte cu azot. Poate fi oxidat cu un consum redus de energie și transformat într-o formă biologic activă de către cianobacteriile (alge albastre-verzi) și bacteriile nodulare care formează o simbioză rizobială cu leguminoasele, care pot fi plante eficiente de gunoi verzi care nu epuizează, ci îmbogățesc solul. cu îngrășăminte naturale.

Oxigen

Compoziția atmosferei a început să se schimbe radical odată cu apariția organismelor vii pe Pământ, ca urmare a fotosintezei, însoțită de eliberarea de oxigen și absorbția de dioxid de carbon. Inițial, oxigenul a fost cheltuit pentru oxidarea compușilor reduși - amoniacul, hidrocarburile, forma feroasă a fierului conținută în oceane și altele. La sfârșitul acestei etape, conținutul de oxigen din atmosferă a început să crească. Treptat, s-a format o atmosferă modernă cu proprietăți oxidante. Deoarece acest lucru a provocat schimbări grave și abrupte în multe procese care au loc în atmosferă, litosferă și biosferă, acest eveniment a fost numit Catastrofa oxigenului.

gaze nobile

Poluarea aerului

Recent, omul a început să influențeze evoluția atmosferei. Rezultatul activității umane a fost o creștere constantă a conținutului de dioxid de carbon din atmosferă datorită arderii combustibililor hidrocarburi acumulați în epocile geologice anterioare. Cantități enorme sunt consumate în fotosinteză și absorbite de oceanele lumii. Acest gaz pătrunde în atmosferă din cauza descompunerii rocilor carbonatice și a substanțelor organice de origine vegetală și animală, precum și din cauza vulcanismului și a activităților de producție umană. În ultimii 100 de ani conținut CO 2 (\displaystyle (\ce (CO2)))în atmosferă a crescut cu 10%, cea mai mare parte (360 de miliarde de tone) provenind din arderea combustibilului. Dacă rata de creștere a arderii combustibilului continuă, atunci în următorii 200-300 de ani cantitatea CO 2 (\displaystyle (\ce (CO2))) se dublează în atmosferă şi poate duce la

Aerul este un amestec de gaze necesar pentru existența și menținerea vieții pe planetă. Care sunt caracteristicile sale și ce substanțe sunt incluse în aer?

Aerul este esențial pentru respirație pentru toate organismele vii. Se compune din azot, oxigen, argon, dioxid de carbon și o serie de impurități. Compoziția aerului atmosferic poate varia în funcție de condiții și teren. Deci, în mediul urban, nivelul de dioxid de carbon din aer, în comparație cu centura forestieră, crește din cauza abundenței vehiculelor. La altitudini mari, concentrația de oxigen scade deoarece moleculele de azot sunt mai ușoare decât moleculele de oxigen. Prin urmare, concentrația de oxigen scade mai repede.

Fizicianul și chimistul scoțian Joseph Black în 1754 a demonstrat experimental că aerul nu este doar o substanță, ci un amestec de gaze.

Orez. 1. Joseph Black.

Dacă vorbim despre compoziția aerului ca procent, atunci componenta sa principală este azotul. Azotul ocupă 78% din volumul total de aer. Procentul de oxigen din molecula de aer este de 20,9%. Azotul și oxigenul sunt cele 2 elemente principale ale aerului. Conținutul altor substanțe este mult mai mic și nu depășește 1%. Deci, argonul ocupă un volum de 0,9%, iar dioxidul de carbon - 0,03%. Aerul conține, de asemenea, impurități precum neon, cripton, metan, heliu, hidrogen și xenon.

Orez. 2. Compoziția aerului.

În spațiile industriale, compoziția aeroionică a aerului este de mare importanță. Ionii încărcați negativ prezenți în aer au un efect pozitiv asupra corpului uman, îl energizează și îmbunătățesc starea de spirit.

Azot

Azotul este principalul constituent al aerului. Traducerea numelui elementului - „fără viață” - se poate referi la azot ca o substanță simplă, dar azotul în stare legată este unul dintre elementele principale ale vieții, face parte din proteine, acizi nucleici, vitamine etc.

Azotul - un element din a doua perioadă, nu are stări excitate, deoarece atomul nu are orbitali liberi. Cu toate acestea, azotul este capabil să prezinte în starea fundamentală valență nu numai III, ci și IV datorită formării unei legături covalente de către mecanismul donor-acceptor cu participarea perechii de electroni neîmpărțite de azot. Starea de oxidare pe care o poate prezenta azotul variază foarte mult: de la -3 la +5.

În natură, azotul apare sub forma unei substanțe simple - gaz N2 și în stare legată. În molecula de azot, atomii sunt legați printr-o legătură triplă puternică (energie de legătură 940 kJ/mol). La temperaturi obișnuite, azotul poate interacționa doar cu litiul. După activarea prealabilă a moleculelor prin încălzire, iradiere sau acţiunea catalizatorilor, azotul reacţionează cu metale şi nemetale.

Oxigen

Oxigenul este cel mai comun element de pe Pământ: fracția de masă din scoarța terestră este de 47,3%, iar fracția de volum din atmosferă este de 20,95%, fracția de masă în organismele vii este de aproximativ 65%.

În aproape toți compușii (cu excepția compușilor cu fluor și peroxizi), oxigenul prezintă o valență II constantă și o stare de oxidare de 2. Atomul de oxigen nu are stări excitate, deoarece nu există orbitali liberi la al doilea nivel exterior. Ca substanță simplă, oxigenul există sub forma a două modificări alotropice - oxigenul gazos O2 și ozonul O3. Cel mai important compus de oxigen este apa. Aproximativ 71% din suprafața pământului este ocupată de o înveliș de apă; viața este imposibilă fără apă.

Ozonul se formează în natură din oxigenul atmosferic în timpul descărcărilor fulgerelor, iar în laborator - prin trecerea unei descărcări electrice prin oxigen.

Orez. 3. Ozon.

Ozonul este un agent oxidant și mai puternic decât oxigenul. În special? oxidează aurul și platina

Oxigenul în industrie se obține de obicei prin lichefierea aerului, urmată de separarea azotului datorită evaporării acestuia (există o diferență în punctele de fierbere: -183 grade pentru oxigenul lichid și -196 grade pentru azotul lichid.)

Ce am învățat?

Aerul este un element necesar pentru fiecare ființă vie, a cărui importanță cu greu poate fi supraestimată. Cea mai mare parte este azot și oxigen. Compoziția chimică a aerului include și dioxid de carbon, argon, neon, cripton, hidrogen și heliu. Acest articol despre chimie (clasa 8) vorbește pe scurt despre aer în general și despre elementele sale principale.

Test cu subiecte

Raport de evaluare

Rata medie: 4.6. Evaluări totale primite: 98.

Atmosfera este învelișul gazos al planetei noastre care se rotește cu Pământul. Gazul din atmosferă se numește aer. Atmosfera este în contact cu hidrosfera și acoperă parțial litosfera. Dar este dificil să se determine limitele superioare. În mod convențional, se presupune că atmosfera se extinde în sus pe aproximativ trei mii de kilometri. Acolo curge lin în spațiul fără aer.

Compoziția chimică a atmosferei Pământului

Formarea compoziției chimice a atmosferei a început în urmă cu aproximativ patru miliarde de ani. Inițial, atmosfera era formată doar din gaze ușoare - heliu și hidrogen. Potrivit oamenilor de știință, premisele inițiale pentru crearea unui înveliș de gaz în jurul Pământului au fost erupțiile vulcanice, care, împreună cu lava, au emis o cantitate imensă de gaze. Ulterior, schimbul de gaze a început cu spațiile de apă, cu organismele vii, cu produsele activității lor. Compoziția aerului s-a schimbat treptat și formă modernăînfiinţată în urmă cu câteva milioane de ani.

Principalele componente ale atmosferei sunt azotul (aproximativ 79%) și oxigenul (20%). Procentul rămas (1%) este reprezentat de următoarele gaze: argon, neon, heliu, metan, dioxid de carbon, hidrogen, cripton, xenon, ozon, amoniac, dioxid de sulf și azot, protoxid de azot și monoxid de carbon incluse în acesta. la sută.

În plus, aerul conține vapori de apă și particule (polen de plante, praf, cristale de sare, impurități de aerosoli).

Recent, oamenii de știință au observat o schimbare nu calitativă, ci cantitativă a unor ingrediente din aer. Iar motivul pentru aceasta este persoana și activitatea sa. Numai în ultimii 100 de ani, conținutul de dioxid de carbon a crescut semnificativ! Aceasta este plină de multe probleme, dintre care cea mai globală este schimbările climatice.

Formarea vremii și a climei

Atmosfera joacă un rol vital în modelarea climei și a vremii de pe Pământ. Multe depind de cantitatea de lumină solară, de natura suprafeței subiacente și de circulația atmosferică.

Să ne uităm la factorii în ordine.

1. Atmosfera transmite căldura razelor solare și absoarbe radiațiile nocive. Grecii antici știau că razele Soarelui cad pe diferite părți ale Pământului în unghiuri diferite. Însuși cuvântul „climă” în traducere din greaca veche înseamnă „pantă”. Deci, la ecuator, razele soarelui cad aproape vertical, pentru că aici este foarte cald. Cu cât este mai aproape de poli, cu atât unghiul de înclinare este mai mare. Și temperatura scade.

2. Din cauza încălzirii neuniforme a Pământului, în atmosferă se formează curenți de aer. Ele sunt clasificate în funcție de mărimea lor. Cele mai mici (zeci și sute de metri) sunt vânturile locale. Urmează musoni și alizee, cicloane și anticicloni, zone frontale planetare.

Toate aceste mase de aer se misca constant. Unele dintre ele sunt destul de statice. De exemplu, alizeele care bat din subtropicale spre ecuator. Mișcarea celorlalți depinde în mare măsură de presiunea atmosferică.

3. Presiunea atmosferică este un alt factor care influențează formarea climei. Aceasta este presiunea aerului de pe suprafața pământului. După cum știți, masele de aer se deplasează dintr-o zonă cu presiune atmosferică mare către o zonă în care această presiune este mai mică.

Sunt 7 zone în total. Ecuatorul este o zonă de joasă presiune. În plus, de ambele părți ale ecuatorului până la a treizecea latitudine - regiunea presiune ridicata. De la 30° la 60° - din nou presiune joasă. Și de la 60° la poli - o zonă de înaltă presiune. Masele de aer circulă între aceste zone. Cei care merg de la mare la uscat aduc ploi și vreme rea, iar cei care sufla de pe continente aduc vreme senină și uscată. În locurile în care curenții de aer se ciocnesc, se formează zonele frontale atmosferice, care se caracterizează prin precipitații și vreme nefavorabilă, cu vânt.

Oamenii de știință au demonstrat că chiar și bunăstarea unei persoane depinde de presiunea atmosferică. Conform standardelor internaționale, presiunea atmosferică normală este de 760 mm Hg. coloană la 0°C. Această cifră este calculată pentru acele zone de teren care sunt aproape la nivelul mării. Presiunea scade cu altitudinea. Prin urmare, de exemplu, pentru Sankt Petersburg 760 mm Hg. - este norma. Dar pentru Moscova, care este situată mai sus, presiunea normală este de 748 mm Hg.

Presiunea se schimbă nu numai pe verticală, ci și pe orizontală. Acest lucru se simte mai ales în timpul trecerii cicloanelor.

Structura atmosferei

Atmosfera este ca un tort stratificat. Și fiecare strat are propriile sale caracteristici.

. troposfera este stratul cel mai apropiat de Pământ. „Grosimea” acestui strat se modifică pe măsură ce vă îndepărtați de ecuator. Deasupra ecuatorului, stratul se extinde în sus pe 16-18 km, în zonele temperate - pe 10-12 km, la poli - pe 8-10 km.

Aici sunt conținute 80% din masa totală de aer și 90% din vaporii de apă. Aici se formează nori, se ridică cicloni și anticicloni. Temperatura aerului depinde de altitudinea zonei. În medie, scade cu 0,65°C la fiecare 100 de metri.

. tropopauza- stratul de tranziție al atmosferei. Înălțimea sa este de la câteva sute de metri până la 1-2 km. Temperatura aerului vara este mai mare decât iarna. Deci, de exemplu, peste poli iarna -65 ° C. Și peste ecuator în orice moment al anului este -70 ° C.

. Stratosferă- acesta este un strat, a cărui limită superioară se află la o altitudine de 50-55 de kilometri. Turbulența este scăzută aici, conținutul de vapori de apă din aer este neglijabil. Dar mult ozon. Concentrația sa maximă este la o altitudine de 20-25 km. În stratosferă, temperatura aerului începe să crească și ajunge la +0,8 ° C. Acest lucru se datorează faptului că strat de ozon interacționează cu radiațiile ultraviolete.

. Stratopauza- un strat intermediar jos între stratosferă și mezosferă care îl urmează.

. Mezosfera- limita superioară a acestui strat este de 80-85 de kilometri. Aici au loc procese fotochimice complexe care implică radicalii liberi. Ei sunt cei care oferă acea strălucire albastră blândă a planetei noastre, care este văzută din spațiu.

Majoritatea cometelor și meteoriților ard în mezosferă.

. Mezopauza- următorul strat intermediar, temperatura aerului în care este de cel puțin -90 °.

. Termosferă- limita inferioară începe la o altitudine de 80 - 90 km, iar limita superioară a stratului trece aproximativ la marcajul de 800 km. Temperatura aerului crește. Poate varia de la +500° C la +1000° C. În timpul zilei, fluctuațiile de temperatură se ridică la sute de grade! Dar aerul de aici este atât de rarefiat încât înțelegerea termenului „temperatură” așa cum ne imaginăm nu este potrivită aici.

. ionosferă- unește mezosfera, mezopauza și termosfera. Aerul de aici este format în principal din molecule de oxigen și azot, precum și din plasmă cvasi-neutră. Razele soarelui, care cad în ionosferă, ionizează puternic moleculele de aer. În stratul inferior (până la 90 km), gradul de ionizare este scăzut. Cu cât este mai mare, cu atât mai multă ionizare. Deci, la o altitudine de 100-110 km, electronii sunt concentrați. Acest lucru contribuie la reflectarea undelor radio scurte și medii.

Cel mai important strat al ionosferei este cel superior, care se află la o altitudine de 150-400 km. Particularitatea sa este că reflectă undele radio, iar acest lucru contribuie la transmiterea semnalelor radio pe distanțe lungi.

În ionosferă are loc un astfel de fenomen precum aurora.

. Exosfera- constă din atomi de oxigen, heliu și hidrogen. Gazul din acest strat este foarte rarefiat și adesea atomii de hidrogen scapă în spațiul cosmic. Prin urmare, acest strat este numit „zonă de împrăștiere”.

Primul om de știință care a sugerat că atmosfera noastră are greutate a fost italianul E. Torricelli. Ostap Bender, de exemplu, în romanul „Vițelul de aur” se plângea că fiecare persoană era presată de o coloană de aer care cântărea 14 kg! Dar marele strateg s-a înșelat puțin. O persoană adultă se confruntă cu o presiune de 13-15 tone! Dar nu simțim această greutate, deoarece presiunea atmosferică este echilibrată de presiunea internă a unei persoane. Greutatea atmosferei noastre este de 5.300.000.000.000.000 de tone. Cifra este colosală, deși este doar o milioneme din greutatea planetei noastre.

Atmosfera a început să se formeze odată cu formarea Pământului. În cursul evoluției planetei și pe măsură ce parametrii ei s-au apropiat de valorile moderne, au existat modificări fundamental calitative în compoziția sa chimică și proprietățile fizice. Conform modelului evolutiv, într-un stadiu incipient, Pământul era în stare topit și s-a format ca un corp solid în urmă cu aproximativ 4,5 miliarde de ani. Această piatră de hotar este considerată începutul cronologiei geologice. Din acel moment, a început evoluția lentă a atmosferei. Unele procese geologice (de exemplu, revărsarea de lavă în timpul erupțiilor vulcanice) au fost însoțite de eliberarea de gaze din intestinele Pământului. Acestea includ azot, amoniac, metan, vapori de apă, oxid de CO2 și dioxid de carbon CO2. Sub influența radiației ultraviolete solare, vaporii de apă s-au descompus în hidrogen și oxigen, dar oxigenul eliberat a reacționat cu monoxidul de carbon, formând dioxid de carbon. Amoniacul descompus în azot și hidrogen. Hidrogenul, în procesul de difuzie, s-a ridicat și a părăsit atmosfera, în timp ce azotul mai greu nu a putut scăpa și s-a acumulat treptat, devenind componenta principală, deși o parte din el a fost legată în molecule ca urmare a reacțiilor chimice ( cm. CHIMIA ATMOSFEREI). Sub influența razelor ultraviolete și descărcări electrice amestecul de gaze prezent în atmosfera originară a Pământului a intrat în reacții chimice, care au dus la formarea de substanțe organice, în special aminoacizi. Odată cu apariția plantelor primitive, a început procesul de fotosinteză, însoțit de eliberarea de oxigen. Acest gaz, mai ales după difuzia în atmosfera superioară, a început să-și protejeze straturile inferioare și suprafața Pământului de radiațiile ultraviolete și de raze X care pun viața în pericol. Potrivit estimărilor teoretice, conținutul de oxigen, care este de 25.000 de ori mai mic decât acum, ar putea duce deja la formarea unui strat de ozon cu doar jumătate din cât este acum. Cu toate acestea, acest lucru este deja suficient pentru a oferi o protecție foarte semnificativă a organismelor de efectele dăunătoare ale razelor ultraviolete.

Este probabil ca atmosfera primară să fi conținut mult dioxid de carbon. A fost consumat în timpul fotosintezei, iar concentrația sa trebuie să fi scăzut pe măsură ce lumea vegetală a evoluat, dar și datorită absorbției în timpul unor procese geologice. În măsura în care Efectul de seră asociate cu prezența dioxidului de carbon în atmosferă, fluctuațiile concentrației acestuia sunt una dintre cauzele importante ale unor astfel de schimbări climatice la scară largă în istoria Pământului, cum ar fi epocile glaciare.

Heliul prezent în atmosfera modernă este în mare parte un produs al dezintegrarii radioactive a uraniului, toriului și radiului. Aceste elemente radioactive emit particule a, care sunt nucleele atomilor de heliu. Întrucât o sarcină electrică nu se formează și nu dispare în timpul dezintegrarii radioactive, odată cu formarea fiecărei particule a apar doi electroni care, recombinându-se cu particulele a, formează atomi neutri de heliu. Elementele radioactive sunt conținute în minerale dispersate în grosimea rocilor, astfel încât o parte semnificativă din heliul format ca urmare a descompunerii radioactive este stocată în ele, volatilizându-se foarte lent în atmosferă. O anumită cantitate de heliu se ridică în exosferă datorită difuziei, dar din cauza afluxului constant de la suprafața pământului, volumul acestui gaz în atmosferă rămâne aproape neschimbat. Pe baza analizei spectrale a luminii stelelor și a studiului meteoriților, este posibil să se estimeze abundența relativă a diferitelor elemente chimiceîn Univers. Concentrația de neon în spațiu este de aproximativ zece miliarde de ori mai mare decât pe Pământ, krypton - de zece milioane de ori și xenon - de un milion de ori. De aici rezultă că concentrația acestor gaze inerte, aparent prezente inițial în atmosfera Pământului și nereumplute în cursul reacțiilor chimice, a scăzut foarte mult, probabil chiar în stadiul de pierdere a atmosferei sale primare de către Pământ. Excepția este gaz inert argon, deoarece sub forma izotopului 40 Ar se formează încă în procesul de dezintegrare radioactivă a izotopului de potasiu.

Distribuția presiunii barometrice.

Greutatea totală a gazelor atmosferice este de aproximativ 4,5 10 15 tone.Astfel, „greutatea” atmosferei pe unitatea de suprafață, sau presiunea atmosferică, este de aproximativ 11 t/m2 = 1,1 kg/cm2 la nivelul mării. Presiune egală cu P 0 \u003d 1033,23 g / cm 2 \u003d 1013,250 mbar \u003d 760 mm Hg. Artă. = 1 atm, luată ca presiune atmosferică medie standard. Pentru o atmosferă în echilibru hidrostatic avem: d P= -rgd h, ceea ce înseamnă că pe intervalul de înălțimi de la h inainte de h+d h apare egalitatea între modificarea presiunii atmosferice d Pși greutatea elementului corespunzător al atmosferei cu unitate de suprafață, densitate r și grosime d h. Ca raport între presiune R si temperatura T se folosește ecuația de stare a unui gaz ideal cu densitatea r, care este destul de aplicabilă pentru atmosfera terestră: P= r R T/m, unde m este greutatea moleculară și R = 8,3 J/(K mol) este constanta universală a gazului. Apoi dlog P= – (m g/RT)d h= -bd h= – d h/H, unde gradientul de presiune este pe o scară logaritmică. Reciproca lui H se numește scara înălțimii atmosferei.

Când se integrează această ecuație pentru o atmosferă izotermă ( T= const) sau, la rândul său, acolo unde o astfel de aproximare este acceptabilă, se obține legea barometrică a distribuției presiunii cu înălțimea: P = P 0 exp(- h/H 0), unde citirea înălțimii h produs de la nivelul oceanului, unde este presiunea medie standard P 0 . Expresie H 0=R T/ mg, se numește scara de înălțime, care caracterizează întinderea atmosferei, cu condiția ca temperatura din aceasta să fie aceeași peste tot (atmosfera izotermă). Dacă atmosfera nu este izotermă, atunci este necesar să se integreze ținând cont de schimbarea temperaturii cu înălțimea și a parametrului H- unele caracteristici locale ale straturilor atmosferei, in functie de temperatura acestora si de proprietatile mediului.

Atmosfera standard.

Model (tabel cu valorile parametrilor principali) corespunzător presiunii standard la baza atmosferei R 0 și compoziția chimică se numește atmosfera standard. Mai precis, acesta este un model condiționat al atmosferei, pentru care valorile medii ale temperaturii, presiunii, densității, vâscozității și altor caracteristici ale aerului pentru o latitudine de 45° 32° 33І sunt stabilite la altitudini de la 2 km sub mări nivel până la limita exterioară a atmosferei pământului. Parametrii atmosferei medii la toate altitudinile au fost calculați folosind ecuația de stare a gazului ideal și legea barometrică. presupunând că la nivelul mării presiunea este de 1013,25 hPa (760 mmHg) și temperatura este de 288,15 K (15,0°C). După natura distribuției verticale a temperaturii, atmosfera medie este formată din mai multe straturi, în fiecare dintre ele temperatura fiind aproximată printr-o funcție liniară a înălțimii. În cel mai de jos strat - troposferă (h Ј 11 km), temperatura scade cu 6,5 ° C cu fiecare kilometru de urcare. Pe altitudini mari valoarea și semnul gradientului vertical de temperatură se modifică de la strat la strat. Peste 790 km, temperatura este de aproximativ 1000 K și practic nu se modifică odată cu înălțimea.

Atmosfera standard este un standard actualizat periodic, legalizat, emis sub formă de tabele.

Tabelul 1. Modelul standard al atmosferei terestre
Tabelul 1. MODEL STANDARD DE ATMOSFERĂ Pământului. Tabelul arată: h- înălțimea față de nivelul mării, R- presiune, T– temperatura, r – densitatea, N este numărul de molecule sau atomi pe unitatea de volum, H- scara de inaltime, l este lungimea drumului liber. Presiunea și temperatura la o altitudine de 80–250 km, obținute din datele rachetelor, au valori mai mici. Valorile extrapolate pentru înălțimi mai mari de 250 km nu sunt foarte precise.
h(km) P(mbar) T(°C) r (g/cm 3) N(cm -3) H(km) l(cm)
0 1013 288 1,22 10 -3 2,55 10 19 8,4 7,4 10 -6
1 899 281 1,11 10 -3 2.31 10 19 8,1 10 -6
2 795 275 1,01 10 -3 2.10 10 19 8,9 10 -6
3 701 268 9,1 10 -4 1,89 10 19 9,9 10 -6
4 616 262 8,2 10 -4 1,70 10 19 1,1 10 -5
5 540 255 7,4 10 -4 1,53 10 19 7,7 1,2 10 -5
6 472 249 6,6 10 -4 1,37 10 19 1,4 10 -5
8 356 236 5,2 10 -4 1.09 10 19 1,7 10 -5
10 264 223 4,1 10 -4 8,6 10 18 6,6 2,2 10 -5
15 121 214 1,93 10 -4 4,0 10 18 4,6 10 -5
20 56 214 8,9 10 -5 1,85 10 18 6,3 1,0 10 -4
30 12 225 1,9 10 -5 3,9 10 17 6,7 4,8 10 -4
40 2,9 268 3,9 10 -6 7,6 10 16 7,9 2,4 10 -3
50 0,97 276 1,15 10 -6 2,4 10 16 8,1 8,5 10 -3
60 0,28 260 3,9 10 -7 7,7 10 15 7,6 0,025
70 0,08 219 1,1 10 -7 2,5 10 15 6,5 0,09
80 0,014 205 2,7 10 -8 5,0 10 14 6,1 0,41
90 2,8 10 -3 210 5,0 10 -9 9 10 13 6,5 2,1
100 5,8 10 -4 230 8,8 10 -10 1,8 10 13 7,4 9
110 1,7 10 -4 260 2.1 10 –10 5.4 10 12 8,5 40
120 6 10 -5 300 5,6 10 -11 1,8 10 12 10,0 130
150 5 10 -6 450 3,2 10 -12 9 10 10 15 1,8 10 3
200 5 10 -7 700 1,6 10 -13 5 10 9 25 3 10 4
250 9 10 -8 800 3 10 -14 8 10 8 40 3 10 5
300 4 10 -8 900 8 10 -15 3 10 8 50
400 8 10 -9 1000 1 10 –15 5 10 7 60
500 2 10 -9 1000 2 10 -16 1 10 7 70
700 2 10 –10 1000 2 10 -17 1 10 6 80
1000 1 10 –11 1000 1 10 -18 1 10 5 80

troposfera.

Stratul cel mai de jos și cel mai dens al atmosferei, în care temperatura scade rapid odată cu înălțimea, se numește troposferă. Conține până la 80% din masa totală a atmosferei și se extinde în latitudini polare și medii până la înălțimi de 8–10 km, iar la tropice până la 16–18 km. Aici se dezvoltă aproape toate procesele de formare a vremii, schimbul de căldură și umiditate are loc între Pământ și atmosfera sa, se formează nori, apar diverse fenomene meteorologice, apar ceață și precipitații. Aceste straturi ale atmosferei terestre sunt în echilibru convectiv și, datorită amestecării active, au o compoziție chimică omogenă, în principal din azot molecular (78%) și oxigen (21%). Marea majoritate a poluanților atmosferici cu aerosoli și gaze naturali și artificiali sunt concentrați în troposferă. Dinamica părții inferioare a troposferei cu o grosime de până la 2 km depinde puternic de proprietățile suprafeței subiacente a Pământului, care determină mișcările orizontale și verticale ale aerului (vânturilor) datorită transferului de căldură dintr-un pământ mai cald prin radiația IR a suprafeței terestre, care este absorbită în troposferă, în principal de vapori de apă și dioxid de carbon (efect de seră). Distribuția temperaturii cu înălțimea se stabilește ca urmare a amestecării turbulente și convective. În medie, corespunde unei scăderi a temperaturii cu înălțimea de aproximativ 6,5 K/km.

Viteza vântului în stratul limită de suprafață crește mai întâi rapid odată cu înălțimea, iar mai sus continuă să crească cu 2–3 km/s pe kilometru. Uneori, în troposferă există fluxuri planetare înguste (cu o viteză mai mare de 30 km/s), cele vestice la latitudini medii și cele estice în apropierea ecuatorului. Se numesc curenti cu jet.

tropopauza.

La limita superioară a troposferei (tropopauza), temperatura atinge valoarea minimă pentru atmosfera inferioară. Acesta este stratul de tranziție dintre troposferă și stratosferă de deasupra acestuia. Grosimea tropopauzei este de la sute de metri la 1,5–2 km, iar temperatura și respectiv altitudinea variază de la 190 la 220 K și de la 8 la 18 km, în funcție de latitudinea geografică și anotimp. La latitudini temperate și înalte, iarna este cu 1–2 km mai jos decât vara și cu 8–15 K mai cald. La tropice, schimbările sezoniere sunt mult mai reduse (altitudine 16–18 km, temperatură 180–200 K). De mai sus curente cu jet posibilă ruptură a tropopauzei.

Apa în atmosfera Pământului.

Cea mai importantă caracteristică a atmosferei Pământului este prezența unei cantități semnificative de vapori de apă și apă sub formă de picături, care se observă cel mai ușor sub formă de nori și structuri de nori. Gradul de acoperire cu nori a cerului (la un anumit moment sau în medie într-o anumită perioadă de timp), exprimat pe o scară de 10 puncte sau ca procent, se numește înnorare. Forma norilor este determinată de clasificarea internațională. În medie, norii acoperă aproximativ jumătate din glob. Înnorarea este un factor important care caracterizează vremea și clima. În timpul iernii și nopții, înnorabilitatea împiedică scăderea temperaturii suprafeței pământului și a stratului de aer de la suprafață, vara și ziua slăbește încălzirea suprafeței pământului de către razele solare, înmuiind clima din interiorul continentelor.

nori.

Norii sunt acumulări de picături de apă suspendate în atmosferă (nori de apă), cristale de gheață (nori de gheață) sau ambele (nori amestecați). Pe măsură ce picăturile și cristalele devin mai mari, ele cad din nori sub formă de precipitații. Norii se formează în principal în troposferă. Acestea rezultă din condensarea vaporilor de apă din aer. Diametrul picăturilor de nor este de ordinul mai multor microni. Conținutul de apă lichidă din nori este de la fracții la câteva grame pe m3. Norii se disting prin înălțime: Conform clasificării internaționale, există 10 genuri de nori: cirrus, cirrocumulus, cirrostratus, altocumulus, altostratus, stratonimbus, stratus, stratocumulus, cumulonimbus, cumulus.

În stratosferă se observă și nori sidefați, iar nori noctilucenți în mezosferă.

Nori Cirrus - nori transparenți sub formă de fire subțiri albe sau voaluri cu o strălucire mătăsoasă, care nu dau umbră. Norii ciruri sunt formați din cristale de gheață și se formează în troposfera superioară la temperaturi foarte scăzute. Unele tipuri de nori cirrus servesc ca vestigii ale schimbărilor vremii.

Norii Cirrocumulus sunt creste sau straturi de nori albi subtiri in troposfera superioara. Norii Cirrocumulus sunt construiți din elemente mici care arată ca fulgi, ondulații, bile mici fără umbre și constau în principal din cristale de gheață.

Nori Cirrostratus - un văl translucid albicios în troposfera superioară, de obicei fibros, uneori neclar, format din cristale de gheață cu ace mici sau columnare.

Norii altocumulus sunt nori albi, gri sau alb-gri din straturile inferioare și mijlocii ale troposferei. Norii altocumulus arată ca niște straturi și creste, parcă ar fi construite din plăci situate una peste alta, mase rotunjite, arbori, fulgi. Norii altocumulus se formează în timpul activității convective intense și constau de obicei din picături de apă suprarăcite.

Norii altostratus sunt nori cenușii sau albăstrui cu o structură fibroasă sau uniformă. În troposfera mijlocie se observă nori altostratus, extinzându-se pe câțiva kilometri înălțime și uneori pe mii de kilometri pe direcție orizontală. De obicei, norii altostratus fac parte din sistemele de nori frontali asociate cu mișcările ascendente ale maselor de aer.

Nori Nimbostratus - un strat amorf joasă (de la 2 km și mai sus) de nori de o culoare cenușie uniformă, dând naștere la ploaie sau ninsoare. Norii Nimbostratus - foarte dezvoltați pe verticală (până la câțiva km) și pe orizontală (câteva mii de km), constau din picături de apă suprarăcită amestecate cu fulgi de zăpadă, de obicei asociați cu fronturi atmosferice.

Nori stratus - nori de nivel inferior sub forma unui strat omogen, fără contururi definite, de culoare gri. Înălțimea norilor stratus deasupra suprafeței pământului este de 0,5–2 km. Din nori stratus cade burniță ocazională.

Norii cumulus sunt nori densi, albi strălucitori în timpul zilei, cu o dezvoltare verticală semnificativă (până la 5 km sau mai mult). Părțile superioare ale norilor cumulus arată ca cupole sau turnuri cu contururi rotunjite. Norii cumuluși se formează de obicei ca nori de convecție în mase de aer rece.

Nori stratocumulus - nori joase (sub 2 km) sub formă de straturi nefibroase gri sau albe sau creste de blocuri rotunde mari. Grosimea verticală a norilor stratocumulus este mică. Ocazional, norii stratocumulus dau precipitații ușoare.

Norii cumulonimbus sunt nori puternici si densi cu o puternica dezvoltare verticala (pana la o inaltime de 14 km), dand precipitatii abundente cu furtuni, grindina, furtuni. Norii cumulonimbus se dezvoltă din nori cumulus puternici, diferiți de ei în partea superioară, constând din cristale de gheață.



Stratosferă.

Prin tropopauză, în medie la altitudini de la 12 la 50 km, troposfera trece în stratosferă. În partea inferioară, pentru aproximativ 10 km, adică. până la înălțimi de aproximativ 20 km, este izotermă (temperatura aproximativ 220 K). Apoi crește odată cu altitudinea, atingând un maxim de aproximativ 270 K la o altitudine de 50–55 km. Aici este granița dintre stratosferă și mezosfera de deasupra, numită stratopauză. .

Există mult mai puțini vapori de apă în stratosferă. Cu toate acestea, se observă ocazional nori subțiri de sidef transluci, care apar ocazional în stratosferă la o înălțime de 20–30 km. Norii sidefați sunt vizibili pe cerul întunecat după apus și înainte de răsărit. Ca formă, norii sidefați seamănă cu norii cirrus și cirrocumulus.

Atmosfera medie (mezosfera).

La o altitudine de aproximativ 50 km, mezosfera începe cu vârful unui maxim larg de temperatură. . Motivul creșterii temperaturii în zona acestui maxim este o reacție fotochimică exotermă (adică, însoțită de eliberarea de căldură) de descompunere a ozonului: O 3 + hv® O 2 + O. Ozonul apare ca urmare a descompunerii fotochimice a oxigenului molecular O 2

Aproximativ 2+ hv® O + O și reacția ulterioară a unei triple ciocniri a unui atom și a unei molecule de oxigen cu o a treia moleculă M.

O + O 2 + M ® O 3 + M

Ozonul absoarbe cu lăcomie radiația ultravioletă în regiunea de la 2000 la 3000Å, iar această radiație încălzește atmosfera. Ozonul, situat în atmosfera superioară, servește ca un fel de scut care ne protejează de acțiunea radiațiilor ultraviolete de la soare. Fără acest scut, dezvoltarea vieții pe Pământ în formele sale moderne cu greu ar fi fost posibilă.

În general, în întreaga mezosferă, temperatura atmosferei scade la valoarea sa minimă de aproximativ 180 K la limita superioară a mezosferei (numită mezopauză, înălțimea este de aproximativ 80 km). În vecinătatea mezopauzei, la altitudini de 70–90 km, poate apărea un strat foarte subțire de cristale de gheață și particule de praf vulcanic și de meteorit, observate sub forma unui spectacol frumos de nori noctilucenți. la scurt timp după apusul soarelui.

În mezosferă, în cea mai mare parte, mici particule solide de meteorit care cad pe Pământ sunt arse, provocând fenomenul meteorilor.

Meteori, meteoriți și bile de foc.

Erupțiile și alte fenomene din atmosfera superioară a Pământului cauzate de pătrunderea în acesta cu o viteză de 11 km/s și deasupra particulelor sau corpurilor cosmice solide se numesc meteoroizi. Există o urmă de meteoriți strălucitoare observată; cele mai puternice fenomene, adesea însoțite de căderea meteoriților, se numesc bile de foc; meteorii sunt asociați cu ploile de meteoriți.

ploaia de meteoriți:

1) fenomenul mai multor meteori cade pe mai multe ore sau zile dintr-un radiant.

2) un roi de meteoriți care se deplasează pe o orbită în jurul Soarelui.

Apariția sistematică a meteorilor într-o anumită regiune a cerului și în anumite zile ale anului, cauzată de intersecția orbitei Pământului cu o orbită comună a multor corpuri de meteoriți care se deplasează la viteze aproximativ aceleași și egal direcționate, datorită cărora lor căile pe cer par să iasă dintr-un punct comun (radiant). Ele sunt numite după constelația în care se află radiantul.

Ploaia de meteori face o impresie profundă cu efectele lor de lumină, dar meteorii individuali sunt rar observați. Mult mai numeroși sunt meteorii invizibili, prea mici pentru a fi văzuți în momentul în care sunt înghițiți de atmosferă. Unii dintre cei mai mici meteori probabil nu se încălzesc deloc, ci sunt doar capturați de atmosferă. Aceste particule mici, cu dimensiuni de la câțiva milimetri la zece miimi de milimetru, sunt numite micrometeoriți. Cantitatea de materie meteorică care intră în atmosferă în fiecare zi este de la 100 la 10.000 de tone, cea mai mare parte a acestei materii fiind micrometeoriți.

Deoarece materia meteorică arde parțial în atmosferă, compoziția sa de gaz este completată cu urme de diferite elemente chimice. De exemplu, meteorii de piatră aduc litiu în atmosferă. Arderea meteorilor metalici duce la formarea de mici picături sferice de fier, fier-nichel și alte picături care trec prin atmosferă și se depun pe suprafața pământului. Pot fi găsite în Groenlanda și Antarctica, unde calotele de gheață rămân aproape neschimbate ani de zile. Oceanologii le găsesc în sedimentele de pe fundul oceanului.

Majoritatea particulelor de meteori care intră în atmosferă sunt depuse în aproximativ 30 de zile. Unii oameni de știință consideră că acest praf cosmic joacă un rol important în formarea fenomenelor atmosferice precum ploaia, deoarece servește drept nuclee de condensare a vaporilor de apă. Prin urmare, se presupune că precipitațiile sunt asociate statistic cu ploi mari de meteoriți. Cu toate acestea, unii experți consideră că, deoarece aportul total de materie meteorică este de multe zeci de ori mai mare decât chiar și cu cea mai mare ploaie de meteori, modificarea cantității totale a acestui material care are loc ca urmare a unei astfel de ploaie poate fi neglijată.

Cu toate acestea, nu există nicio îndoială că cei mai mari micrometeoriți și meteoriți vizibili lasă urme lungi de ionizare în straturile înalte ale atmosferei, în principal în ionosferă. Astfel de urme pot fi folosite pentru comunicații radio pe distanțe lungi, deoarece reflectă undele radio de înaltă frecvență.

Energia meteorilor care intră în atmosferă este cheltuită în principal, și poate complet, pentru încălzirea acesteia. Aceasta este una dintre componentele minore ale echilibrului termic al atmosferei.

Un meteorit este un corp solid de origine naturală care a căzut la suprafața Pământului din spațiu. De obicei, distinge piatra, piatra de fier și meteoriți de fier. Acestea din urmă sunt compuse în principal din fier și nichel. Dintre meteoriții găsiți, cei mai mulți au o greutate de la câteva grame până la câteva kilograme. Cel mai mare dintre cele găsite, meteoritul de fier Goba cântărește aproximativ 60 de tone și se află încă în același loc în care a fost descoperit, în Africa de Sud. Majoritatea meteoriților sunt fragmente de asteroizi, dar este posibil ca unii meteoriți să fi venit pe Pământ de pe Lună și chiar de pe Marte.

O minge de foc este un meteor foarte strălucitor, observat uneori chiar și în timpul zilei, lăsând adesea în urmă o dâră de fum și însoțit de fenomene sonore; se termină adesea cu căderea meteoriților.



Termosferă.

Peste temperatura minimă a mezopauzei, începe termosfera, în care temperatura, la început încet, apoi rapid, începe din nou să crească. Motivul este absorbția radiației ultraviolete, solare la altitudini de 150–300 km, datorită ionizării oxigenului atomic: O + hv® O++ e.

În termosferă, temperatura crește continuu până la o înălțime de aproximativ 400 km, unde ajunge la 1800 K în timpul zilei în epoca de maximă activitate solară.În epoca minimelor, această temperatură limită poate fi mai mică de 1000 K. Peste 400 K. km, atmosfera trece într-o exosferă izotermă. Nivel critic(baza exosferei) se află la o altitudine de aproximativ 500 km.

Aurore și multe orbite de sateliți artificiali, precum și nori noctilucenți - toate aceste fenomene apar în mezosferă și termosferă.

Lumini polare.

La latitudini mari în timpul perturbărilor camp magnetic se observă lumini polare. Acestea pot dura câteva minute, dar sunt adesea vizibile câteva ore. Aurorele variază foarte mult ca formă, culoare și intensitate, toate acestea se schimbă uneori foarte repede în timp. Spectrul de aurore este format din linii de emisie și benzi. Unele dintre emisiile de pe cerul nopții sunt îmbunătățite în spectrul aurorei, în primul rând liniile verzi și roșii de l 5577 Å și l 6300 Å de oxigen. Se întâmplă ca una dintre aceste linii să fie de multe ori mai intensă decât cealaltă, iar asta determină culoarea vizibilă a strălucirii: verde sau roșu. Perturbațiile în câmpul magnetic sunt, de asemenea, însoțite de întreruperi ale comunicațiilor radio în regiunile polare. Perturbarea este cauzată de modificările ionosferei, ceea ce înseamnă că în timpul furtunilor magnetice operează o sursă puternică de ionizare. S-a stabilit că furtunile magnetice puternice apar atunci când există grupuri mari de pete în apropierea centrului discului solar. Observațiile au arătat că furtunile nu sunt asociate cu petele în sine, ci cu erupții solare care apar în timpul dezvoltării unui grup de pete.

Aurorele sunt o gamă de lumină de intensitate variabilă cu mișcări rapide observate în regiunile de latitudine mare ale Pământului. Aurora vizuală conține linii de emisie verzi (5577Å) și roșii (6300/6364Å) de oxigen atomic și benzi moleculare de N2, care sunt excitate de particule energetice de origine solară și magnetosferică. Aceste emisii sunt de obicei afișate la o altitudine de aproximativ 100 km și mai mult. Termenul de auroră optică este folosit pentru a se referi la aurorele vizuale și la spectrul lor de emisie din infraroșu până la ultraviolete. Energia radiației din partea infraroșie a spectrului depășește semnificativ energia regiunii vizibile. Când au apărut aurorele, s-au observat emisii în intervalul ULF (

Formele reale de aurore sunt greu de clasificat; Următorii termeni sunt cei mai des utilizați:

1. Calmează arce sau dungi uniforme. Arcul se extinde de obicei pe ~1000 km în direcția paralelei geomagnetice (spre Soare în regiunile polare) și are o lățime de la unu la câteva zeci de kilometri. O bandă este o generalizare a conceptului de arc, de obicei nu are o formă arcuită obișnuită, ci se îndoaie sub formă de S sau sub formă de spirale. Arcurile și benzile sunt situate la altitudini de 100–150 km.

2. Raze de aurora . Acest termen se referă la o structură aurorală întinsă de-a lungul liniilor de câmp magnetic cu o extensie verticală de la câteva zeci la câteva sute de kilometri. Lungimea razelor de-a lungul orizontalei este mică, de la câteva zeci de metri la câțiva kilometri. Razele sunt de obicei observate în arce sau ca structuri separate.

3. Pete sau suprafete . Acestea sunt zone izolate de strălucire care nu au o formă specifică. Petele individuale pot fi legate.

4. Voal. O formă neobișnuită de auroră, care este o strălucire uniformă care acoperă zone mari ale cerului.

Conform structurii, aurorele sunt împărțite în omogene, lustruite și strălucitoare. Se folosesc diverși termeni; arc pulsat, suprafață pulsatorie, suprafață difuză, bandă radiantă, draperii etc. Există o clasificare a aurorelor în funcție de culoarea lor. Conform acestei clasificări, aurore de tip DAR. Partea superioară sau complet este roșie (6300–6364 Å). Ele apar de obicei la altitudini de 300–400 km în timpul activității geomagnetice ridicate.

tip Aurora ÎN sunt colorate în roșu în partea inferioară și sunt asociate cu luminiscența benzilor primului sistem N 2 pozitiv și primului sistem O 2 negativ. Astfel de forme de aurore apar în timpul celor mai active faze ale aurorelor.

Zonele aurore acestea sunt zone cu frecvența maximă de apariție a aurorelor pe timp de noapte, conform observatorilor la un punct fix de pe suprafața Pământului. Zonele sunt situate la 67° latitudine nordică și sudică, iar lățimea lor este de aproximativ 6°. Apariția maximă a aurorelor corespunzătoare momentul prezent ora locală geomagnetică, apare în centuri de tip oval (aurore ovale), care sunt situate asimetric în jurul polilor geomagnetici nord și sud. Ovalul aurorei este fixat în coordonate latitudine-timp, iar zona aurorală este locul punctelor din regiunea de la miezul nopții a ovalului în coordonate latitudine-longitudine. Centura ovală este situată la aproximativ 23° de polul geomagnetic în sectorul de noapte și 15° în sectorul de zi.

Zone aurorale ovale și aurore. Locația ovalului aurorei depinde de activitatea geomagnetică. Ovalul devine mai larg la activitate geomagnetică ridicată. Zonele de aurora sau limitele ovale ale aurorelor sunt mai bine reprezentate prin L 6.4 decât prin coordonatele dipolului. Liniile câmpului geomagnetic de la limita sectorului de zi al ovalului aurorei coincid cu magnetopauză. Există o schimbare a poziției ovalului aurorei în funcție de unghiul dintre axa geomagnetică și direcția Pământ-Soare. Ovalul auroral este determinat și pe baza datelor privind precipitarea particulelor (electroni și protoni) a anumitor energii. Poziția sa poate fi determinată independent din datele de pe caspakh pe zi și în magnetotail.

Variația zilnică a frecvenței de apariție a aurorelor în zona aurorelor are un maxim la miezul nopții geomagnetice și un minim la amiaza geomagnetică. Pe partea aproape ecuatorială a ovalului, frecvența de apariție a aurorelor scade brusc, dar se păstrează forma variațiilor diurne. Pe partea polară a ovalului, frecvența de apariție a aurorelor scade treptat și se caracterizează prin modificări diurne complexe.

Intensitatea aurorelor.

Intensitatea Aurora determinată prin măsurarea suprafeței de luminanță aparentă. Suprafata de luminozitate eu aurore într-o anumită direcție este determinată de emisia totală 4p eu foton/(cm 2 s). Deoarece această valoare nu este luminozitatea reală a suprafeței, ci reprezintă emisia din coloană, unitatea foton/(cm 2 coloană s) este de obicei utilizată în studiul aurorelor. Unitatea uzuală de măsurare a emisiei totale este Rayleigh (Rl) egal cu 10 6 fotoni / (cm 2 coloană s). O unitate mai practică de intensitate a aurorei este determinată din emisiile unei singure linii sau benzi. De exemplu, intensitatea aurorelor este determinată de coeficienții internaționali de luminozitate (ICF) conform datelor de intensitate a liniei verzi (5577 Å); 1 kRl = I MKH, 10 kRl = II MKH, 100 kRl = III MKH, 1000 kRl = IV MKH (intensitatea maximă a aurorei). Această clasificare nu poate fi utilizată pentru aurore roșii. Una dintre descoperirile epocii (1957–1958) a fost stabilirea distribuției spațiale și temporale a aurorelor sub forma unui oval deplasat față de polul magnetic. Din idei simple despre forma circulară a distribuției aurorelor în raport cu polul magnetic, trecerea la fizica modernă a magnetosferei a fost finalizată. Onoarea descoperirii îi aparține lui O. Khorosheva și G. Starkov, J. Feldshtein, S-I. Aurora ovală este regiunea cu cel mai intens impact al vântului solar asupra atmosferei superioare a Pământului. Intensitatea aurorelor este cea mai mare în oval, iar dinamica acestuia este monitorizată continuu de sateliți.

Arcuri roșii aurorale stabile.

Arc roșu auroral constant, altfel numit arc roșu de latitudine medie sau M-arc, este un arc subvizual (sub limita de sensibilitate a ochiului) larg, întins de la est la vest pe mii de kilometri și înconjurând, eventual, întregul Pământ. Întinderea latitudinală a arcului este de 600 km. Emisia din arcul roșu auroral stabil este aproape monocromatică în liniile roșii l 6300 Å și l 6364 Å. Recent, au fost raportate linii de emisie slabe l 5577 Å (OI) și l 4278 Å (N + 2). Arcurile roșii persistente sunt clasificate ca aurore, dar apar la altitudini mult mai mari. Limita inferioară este situată la o altitudine de 300 km, limita superioară este de aproximativ 700 km. Intensitatea arcului roșu auroral liniștit în emisia l 6300 Å variază de la 1 la 10 kRl (o valoare tipică este de 6 kRl). Pragul de sensibilitate al ochiului la această lungime de undă este de aproximativ 10 kR, astfel încât arcurile sunt rareori observate vizual. Cu toate acestea, observațiile au arătat că luminozitatea lor este >50 kR în 10% din nopți. Durata de viață obișnuită a arcurilor este de aproximativ o zi și apar rar în zilele următoare. Undele radio de la sateliți sau surse radio care traversează arcuri roșii aurorale stabile sunt supuse scintilațiilor, indicând existența neomogenităților de densitate electronică. Explicația teoretică a arcurilor roșii este că electronii încălziți ai regiunii F ionosferele provoacă o creștere a atomilor de oxigen. Observațiile prin satelit arată o creștere a temperaturii electronilor de-a lungul liniilor de câmp geomagnetic care traversează arcuri roșii aurorale stabile. Intensitatea acestor arcuri se corelează pozitiv cu activitatea geomagnetică (furtuni), iar frecvența de apariție a arcelor se corelează pozitiv cu activitatea petelor solare.

Schimbarea aurora.

Unele forme de aurore experimentează variații de intensitate temporală cvasi-periodice și coerente. Aceste aurore, cu o geometrie aproximativ staționară și variații periodice rapide care apar în fază, sunt numite aurore în schimbare. Sunt clasificate ca aurore forme R conform Atlasului internațional al aurorelor O subdiviziune mai detaliată a aurorelor în schimbare:

R 1 (aurora pulsatorie) este o strălucire cu variații uniforme de fază în luminozitate pe toată forma aurorei. Prin definiție, într-o auroră pulsatorie ideală, părțile spațiale și temporale ale pulsației pot fi separate, i.e. luminozitatea eu(r,t)= eu s(rACEASTA(t). Într-o auroră tipică R 1, pulsațiile apar cu o frecvență de 0,01 până la 10 Hz de intensitate scăzută (1–2 kR). Cele mai multe aurore R 1 sunt puncte sau arce care pulsează cu o perioadă de câteva secunde.

R 2 (aurora de foc). Acest termen este de obicei folosit pentru a se referi la mișcări precum flăcările care umplu cerul și nu pentru a descrie o singură formă. Aurorele au formă de arc și se deplasează de obicei în sus de la o înălțime de 100 km. Aceste aurore sunt relativ rare și apar mai des în afara aurorelor.

R 3 (aurora pâlpâitoare). Acestea sunt aurore cu variații rapide, neregulate sau regulate de luminozitate, dând impresia unei flăcări pâlpâitoare pe cer. Ele apar cu puțin timp înainte de prăbușirea aurorei. Frecvența de variație observată frecvent R 3 este egal cu 10 ± 3 Hz.

Termenul de aurore în flux, folosit pentru o altă clasă de aurore pulsatoare, se referă la variațiile neregulate ale luminozității care se mișcă rapid orizontal în arce și benzi de aurore.

Aurora în schimbare este unul dintre fenomenele solar-terestre care însoțesc pulsațiile câmpului geomagnetic și radiația de raze X aurorale cauzate de precipitarea particulelor de origine solară și magnetosferică.

Strălucirea calotei polare este caracterizată de o intensitate ridicată a benzii primului sistem negativ N + 2 (λ 3914 Å). De obicei, aceste benzi N + 2 sunt de cinci ori mai intense decât linia verde OI l 5577 Å; intensitatea absolută a strălucirii capacului polar este de la 0,1 la 10 kRl (de obicei 1-3 kRl). Cu aceste aurore, care apar în perioadele PCA, o strălucire uniformă acoperă întreaga calotă polară până la latitudinea geomagnetică de 60° la altitudini de 30 până la 80 km. Este generat în principal de protoni solari și particule d cu energii de 10–100 MeV, care creează un maxim de ionizare la aceste înălțimi. Există un alt tip de strălucire în zonele aurorelor, numite aurore de manta. Pentru acest tip de strălucire aurorală, intensitatea maximă zilnică în orele dimineții este de 1–10 kR, iar intensitatea minimă este de cinci ori mai slabă. Observațiile aurorelor de manta sunt puține, iar intensitatea lor depinde de activitatea geomagnetică și solară.

Strălucire atmosferică este definită ca radiație produsă și emisă de atmosfera unei planete. Aceasta este radiația non-termică a atmosferei, cu excepția emisiei de aurore, a descărcărilor de fulgere și a emisiei de urme de meteori. Acest termen este folosit în relație cu atmosfera pământului (strălucire nocturnă, strălucire crepusculară și strălucire de zi). Strălucirea atmosferică este doar o fracțiune din lumina disponibilă în atmosferă. Alte surse sunt lumina stelelor, lumina zodiacală și lumina împrăștiată în timpul zilei de la soare. Uneori, strălucirea atmosferei poate fi de până la 40% din cantitatea totală de lumină. Lumina aerului apare în straturile atmosferice de diferite înălțimi și grosimi. Spectrul de strălucire atmosferică acoperă lungimi de undă de la 1000 Å la 22,5 µm. Linia principală de emisie în lumina aerului este l 5577 Å, care apare la o înălțime de 90–100 km într-un strat de 30–40 km gros. Apariția strălucirii se datorează mecanismului Champen bazat pe recombinarea atomilor de oxigen. Alte linii de emisie sunt l 6300 Å, apărând în cazul recombinării disociative O + 2 și emisie NI l 5198/5201 Å și NI l 5890/5896 Å.

Intensitatea strălucirii atmosferice este măsurată în Rayleighs. Luminozitatea (în Rayleighs) este egală cu 4 rb, unde c este suprafața unghiulară a luminanței stratului emițător în unități de 10 6 fotoni/(cm 2 sr s). Intensitatea strălucirii depinde de latitudine (diferit pentru diferite emisii) și, de asemenea, variază în timpul zilei, cu un maxim aproape de miezul nopții. O corelație pozitivă a fost observată pentru strălucirea aerului în emisia l 5577 Å cu numărul de pete solare și fluxul de radiație solară la o lungime de undă de 10,7 cm.Strălucirea aerului a fost observată în timpul experimentelor prin satelit. Din spațiul cosmic, arată ca un inel de lumină în jurul Pământului și are o culoare verzuie.









Ozonosfera.

La altitudini de 20–25 km, concentrația maximă a unei cantități neglijabile de ozon O 3 (până la 2×10–7 din conținutul de oxigen!), care apare sub acțiunea radiației ultraviolete solare la altitudini de aproximativ 10 până la 50 km. km, se ajunge, protejând planeta de radiațiile solare ionizante. În ciuda numărului extrem de mic de molecule de ozon, ele protejează întreaga viață de pe Pământ de efectele nocive ale radiațiilor cu unde scurte (ultraviolete și raze X) de la Soare. Dacă precipitați toate moleculele la baza atmosferei, obțineți un strat de cel mult 3-4 mm grosime! La altitudini de peste 100 km, proporția gazelor ușoare crește, iar la altitudini foarte mari predomină heliul și hidrogenul; multe molecule se disociază în atomi separați, care, fiind ionizați sub influența radiației solare dure, formează ionosfera. Presiunea și densitatea aerului din atmosfera Pământului scad odată cu înălțimea. În funcție de distribuția temperaturii, atmosfera Pământului este împărțită în troposferă, stratosferă, mezosferă, termosferă și exosferă. .

La o altitudine de 20-25 km este situat strat de ozon. Ozonul se formează din cauza degradarii moleculelor de oxigen în timpul absorbției radiației ultraviolete solare cu lungimi de undă mai scurte de 0,1–0,2 microni. Oxigenul liber se combină cu moleculele de O 2 și formează ozonul de O 3, care absoarbe cu lăcomie toată lumina ultravioletă mai scurtă de 0,29 microni. Moleculele de ozon O 3 sunt ușor distruse de radiația cu unde scurte. Prin urmare, în ciuda rarefierii sale, stratul de ozon absoarbe eficient radiația ultravioletă a Soarelui, care a trecut prin straturile atmosferice mai înalte și mai transparente. Datorită acestui fapt, organismele vii de pe Pământ sunt protejate de efectele nocive ale luminii ultraviolete de la Soare.



ionosferă.

Radiația solară ionizează atomii și moleculele atmosferei. Gradul de ionizare devine semnificativ deja la o altitudine de 60 de kilometri și crește constant odată cu distanța de la Pământ. La diferite altitudini din atmosferă au loc procese succesive de disociere a diferitelor molecule și ionizarea ulterioară a diferiților atomi și ioni. Practic, acestea sunt molecule de oxigen O 2 , azot N 2 și atomii lor. În funcție de intensitatea acestor procese, diferite straturi ale atmosferei situate peste 60 de kilometri sunt numite straturi ionosferice. , iar totalitatea lor este ionosfera . Stratul inferior, a cărui ionizare este nesemnificativă, se numește neutrosferă.

Concentrația maximă de particule încărcate în ionosferă este atinsă la altitudini de 300–400 km.

Istoria studiului ionosferei.

Ipoteza existenței unui strat conducător în atmosfera superioară a fost înaintată în 1878 de omul de știință englez Stuart pentru a explica caracteristicile câmpului geomagnetic. Apoi, în 1902, independent unul de celălalt, Kennedy în SUA și Heaviside în Anglia au subliniat că pentru a explica propagarea undelor radio pe distanțe mari, este necesar să se presupună existența unor regiuni cu conductivitate ridicată în straturile înalte ale atmosfera. În 1923, academicianul M.V. Shuleikin, având în vedere caracteristicile propagării undelor radio de diferite frecvențe, a ajuns la concluzia că în ionosferă există cel puțin două straturi reflectorizante. Apoi, în 1925, cercetătorii englezi Appleton și Barnet, precum și Breit și Tuve, au demonstrat experimental pentru prima dată existența unor regiuni care reflectă undele radio și au pus bazele studiului lor sistematic. Din acel moment, a fost efectuat un studiu sistematic al proprietăților acestor straturi, numite în general ionosferă, jucând un rol semnificativ într-o serie de fenomene geofizice care determină reflexia și absorbția undelor radio, ceea ce este foarte important pentru practică. scopul, în special, de a asigura comunicații radio fiabile.

În anii 1930 au început observațiile sistematice ale stării ionosferei. La noi, la inițiativa lui M.A. Bonch-Bruevich, au fost realizate instalații pentru sonorizarea lui pulsată. Au fost investigate multe proprietăți generale ale ionosferei, înălțimile și densitatea electronică a straturilor sale principale.

La altitudini de 60–70 km, se observă stratul D; la altitudini de 100–120 km, E, la altitudini, la altitudini de 180–300 km strat dublu F 1 și F 2. Principalii parametri ai acestor straturi sunt prezentați în Tabelul 4.

Tabelul 4
Tabelul 4
Regiunea ionosferei Inaltime maxima, km T i , K Zi Noapte ne , cm -3 a΄, ρm 3 s 1
min ne , cm -3 Max ne , cm -3
D 70 20 100 200 10 10 –6
E 110 270 1,5 10 5 3 10 5 3000 10 –7
F 1 180 800–1500 3 10 5 5 10 5 3 10 -8
F 2 (iarnă) 220–280 1000–2000 6 10 5 25 10 5 ~10 5 2 10 –10
F 2 (vară) 250–320 1000–2000 2 10 5 8 10 5 ~3 10 5 10 –10
ne este concentrația de electroni, e este sarcina electronilor, T i este temperatura ionului, a΄ este coeficientul de recombinare (care determină neși schimbarea ei în timp)

Sunt date medii deoarece variază pentru diferite latitudini, momente ale zilei și anotimpuri. Astfel de date sunt necesare pentru a asigura comunicații radio pe distanță lungă. Ele sunt utilizate în selectarea frecvențelor de operare pentru diverse legături radio cu unde scurte. Cunoașterea modificării acestora în funcție de starea ionosferei în diferite momente ale zilei și în diferite anotimpuri este extrem de importantă pentru asigurarea fiabilității comunicațiilor radio. Ionosfera este o colecție de straturi ionizate ale atmosferei terestre, începând de la altitudini de aproximativ 60 km și extinzându-se la altitudini de zeci de mii de km. Principala sursă de ionizare a atmosferei Pământului este radiația ultravioletă și de raze X ale Soarelui, care apare în principal în cromosfera solară și coroană. În plus, gradul de ionizare al atmosferei superioare este afectat de fluxurile corpusculare solare care apar în timpul erupțiilor solare, precum și de razele cosmice și particulele de meteori.

Straturi ionosferice

sunt zone din atmosferă în care sunt atinse valorile maxime ale concentrației de electroni liberi (adică numărul acestora pe unitate de volum). Electronii liberi încărcați electric și (într-o măsură mai mică, ionii mai puțin mobili) rezultați din ionizarea atomilor de gaz atmosferici, care interacționează cu undele radio (adică oscilații electromagnetice), își pot schimba direcția, reflectându-i sau refractându-i și absorbindu-le energia. Ca urmare, la recepționarea posturilor de radio la distanță, pot apărea diferite efecte, de exemplu, estomparea radioului, audibilitatea crescută a posturilor îndepărtate, pene de curent etc. fenomene.

Metode de cercetare.

Metodele clasice de studiere a ionosferei de pe Pământ sunt reduse la sondarea impulsurilor - trimiterea de impulsuri radio și observarea reflexiilor acestora din diferite straturi ale ionosferei cu măsurarea timpului de întârziere și studierea intensității și formei semnalelor reflectate. Măsurând înălțimile de reflexie a impulsurilor radio la frecvențe diferite, determinând frecvențele critice ale diferitelor regiuni (frecvența purtătoare a impulsului radio pentru care această regiune a ionosferei devine transparentă se numește frecvența critică), este posibil să se determine valoarea densității electronilor din straturi și înălțimile efective pentru frecvențele date și alegeți frecvențele optime pentru căi radio date. Odată cu dezvoltarea tehnologiei rachetelor și apariția erei spațiale a sateliților artificiali de pe Pământ (AES) și a altor nave spațiale, a devenit posibilă măsurarea directă a parametrilor plasmei spațiale din apropierea Pământului, a cărei parte inferioară este ionosfera.

Măsurătorile densității electronilor efectuate de pe rachete lansate special și de-a lungul traseelor ​​de zbor prin satelit au confirmat și rafinat datele obținute anterior prin metode la sol privind structura ionosferei, distribuția densității electronilor cu înălțimea în diferite regiuni ale Pământului și au făcut posibilă. pentru a obține valori ale densității electronice peste maximul principal - stratul F. Anterior, era imposibil să se facă acest lucru prin metode de sondare bazate pe observații ale impulsurilor radio de lungimi de undă scurte reflectate. S-a descoperit că în unele regiuni ale globului există regiuni destul de stabile cu densitate scăzută de electroni, „vânturi ionosferice” obișnuite, în ionosferă apar procese de undă deosebite care transportă perturbări ionosferice locale la mii de kilometri de locul excitației și mult mai mult. Crearea unor dispozitive de recepție deosebit de sensibile a făcut posibilă efectuarea la stațiile de sondare pulsată a ionosferei a recepției de semnale pulsate reflectate parțial din regiunile cele mai joase ale ionosferei (stație de reflexii parțiale). Utilizarea unor instalații puternice de impulsuri în intervalele de lungimi de undă contoare și decimetrice cu utilizarea antenelor care permit o concentrație mare de energie radiată a făcut posibilă observarea semnalelor împrăștiate de ionosferă la diferite înălțimi. Studiul caracteristicilor spectrelor acestor semnale, împrăștiate incoerent de electroni și ioni ai plasmei ionosferice (pentru aceasta, au fost utilizate stații de împrăștiere incoerentă a undelor radio) a făcut posibilă determinarea concentrației de electroni și ioni, echivalentul acestora. temperatura la diferite altitudini până la altitudini de câteva mii de kilometri. S-a dovedit că ionosfera este suficient de transparentă pentru frecvențele utilizate.

Concentrația sarcinilor electrice (densitatea electronilor este egală cu cea ionică) în ionosfera terestră la o înălțime de 300 km este de aproximativ 106 cm–3 în timpul zilei. O plasmă cu această densitate reflectă undele radio mai lungi de 20 m, în timp ce le transmite pe cele mai scurte.

Distribuția verticală tipică a densității electronilor în ionosferă pentru condiții de zi și de noapte.

Propagarea undelor radio în ionosferă.

Recepția stabilă a stațiilor de emisie cu rază lungă de acțiune depinde de frecvențele utilizate, precum și de ora din zi, sezon și, în plus, de activitatea solară. Activitatea solară afectează semnificativ starea ionosferei. Undele radio emise de o stație terestră se propagă în linie dreaptă, ca toate tipurile de unde electromagnetice. Cu toate acestea, trebuie luat în considerare faptul că atât suprafața Pământului, cât și straturile ionizate ale atmosferei sale servesc ca un fel de plăci ale unui condensator uriaș, acționând asupra lor ca acțiunea oglinzilor asupra luminii. Reflectate de ele, undele radio pot parcurge multe mii de kilometri, aplecându-se în jurul globului în salturi uriașe de sute și mii de kilometri, reflectându-se alternativ dintr-un strat de gaz ionizat și de pe suprafața Pământului sau a apei.

În anii 1920, se credea că undele radio mai scurte de 200 m nu erau în general potrivite pentru comunicații la distanță lungă din cauza absorbției puternice. Primele experimente privind recepția pe distanță lungă a undelor scurte peste Atlantic, între Europa și America, au fost efectuate de fizicianul englez Oliver Heaviside și de inginerul electric american Arthur Kennelly. Independent unul de celălalt, ei au sugerat că undeva în jurul Pământului există un strat ionizat al atmosferei care poate reflecta undele radio. A fost numit stratul Heaviside - Kennelly, iar apoi - ionosfera.

Conform conceptelor moderne, ionosfera este formată din electroni liberi încărcați negativ și ioni încărcați pozitiv, în principal oxigen molecular O + și oxid nitric NO + . Ionii și electronii se formează ca urmare a disocierii moleculelor și a ionizării atomilor de gaz neutru prin raze X solare și radiații ultraviolete. Pentru a ioniza un atom, este necesar să-l informăm despre energia de ionizare, a cărei sursă principală pentru ionosferă este radiația ultravioletă, cu raze X și corpusculară a Soarelui.

Atâta timp cât învelișul de gaz al Pământului este iluminat de Soare, în ea se formează continuu tot mai mulți electroni, dar, în același timp, unii dintre electroni, ciocnind cu ioni, se recombină, formând din nou particule neutre. După apusul soarelui, producția de noi electroni aproape se oprește, iar numărul de electroni liberi începe să scadă. Cu cât sunt mai mulți electroni liberi în ionosferă, cu atât undele de înaltă frecvență sunt reflectate din ea. Odată cu scăderea concentrației de electroni, trecerea undelor radio este posibilă numai în intervalele de frecvență joasă. De aceea, noaptea, de regulă, este posibil să primiți stații îndepărtate doar în intervalele de 75, 49, 41 și 31 m. Electronii sunt distribuiți inegal în ionosferă. La o altitudine de 50 până la 400 km, există mai multe straturi sau regiuni cu densitate de electroni crescută. Aceste zone tranzitează fără probleme una în alta și afectează propagarea undelor radio HF în moduri diferite. Stratul superior al ionosferei este notat cu litera F. Aici este cel mai înalt grad de ionizare (fracția de particule încărcate este de aproximativ 10–4). Este situat la o altitudine de peste 150 km deasupra suprafeței Pământului și joacă principalul rol reflectorizant în propagarea pe distanță lungă a undelor radio ale benzilor HF de înaltă frecvență. În lunile de vară, regiunea F se împarte în două straturi - F 1 și F 2. Stratul F1 poate ocupa înălțimi de la 200 la 250 km, iar stratul F 2 pare să „plutească” în intervalul de altitudine de 300–400 km. De obicei strat F 2 este ionizat mult mai puternic decât stratul F unu . stratul de noapte F 1 dispare și strat F 2 rămâne, pierzând încet până la 60% din gradul său de ionizare. Sub stratul F, la altitudini de la 90 la 150 km, există un strat E, a cărei ionizare are loc sub influența radiațiilor moi de raze X de la Soare. Gradul de ionizare al stratului E este mai mic decât cel al F, în timpul zilei, recepția stațiilor cu benzi HF de joasă frecvență de 31 și 25 m are loc atunci când semnalele sunt reflectate din strat E. De obicei, acestea sunt stații situate la o distanță de 1000–1500 km. Noaptea într-un strat E ionizarea scade brusc, dar chiar și în acest moment continuă să joace un rol semnificativ în recepția semnalelor de la stațiile din benzile 41, 49 și 75 m.

De mare interes pentru recepţionarea semnalelor din benzile HF de înaltă frecvenţă de 16, 13 şi 11 m sunt cele care apar în zonă. E straturile intermediare (norii) de ionizare puternic crescută. Suprafața acestor nori poate varia de la câțiva la sute de kilometri pătrați. Acest strat de ionizare crescută se numește strat sporadic. Eși notat Es. Norii Es se pot deplasa în ionosferă sub influența vântului și ating viteze de până la 250 km/h. Vara, la latitudinile mijlocii în timpul zilei, originea undelor radio datorate norilor Es are loc 15-20 de zile pe lună. În apropierea ecuatorului, este aproape întotdeauna prezent, iar la latitudini mari apare de obicei noaptea. Uneori, în ani de activitate solară scăzută, când nu există trecere către benzile de HF de înaltă frecvență, stațiile îndepărtate apar brusc cu zgomot bun pe benzile de 16, 13 și 11 m, ale căror semnale au fost reflectate în mod repetat de la Es.

Cea mai joasă regiune a ionosferei este regiunea D situat la altitudini cuprinse intre 50 si 90 km. Sunt relativ puțini electroni liberi aici. Din zonă D undele lungi și medii sunt bine reflectate, iar semnalele stațiilor HF de joasă frecvență sunt puternic absorbite. După apus, ionizarea dispare foarte repede și devine posibilă recepționarea stațiilor îndepărtate în intervalele de 41, 49 și 75 m, ale căror semnale sunt reflectate din straturi. F 2 și E. Straturile separate ale ionosferei joacă un rol important în propagarea semnalelor radio HF. Impactul asupra undelor radio se datorează în principal prezenței electronilor liberi în ionosferă, deși mecanismul de propagare a undelor radio este asociat cu prezența ionilor mari. Aceștia din urmă prezintă interes și în studiul proprietăților chimice ale atmosferei, deoarece sunt mai activi decât atomii și moleculele neutre. Reacțiile chimice care au loc în ionosferă joacă un rol important în echilibrul energetic și electric al acesteia.

ionosferă normală. Observațiile efectuate cu ajutorul rachetelor și sateliților geofizici au oferit o mulțime de informații noi, indicând faptul că ionizarea atmosferei are loc sub influența radiației solare cu spectru larg. Partea sa principală (mai mult de 90%) este concentrată în partea vizibilă a spectrului. Radiația ultravioletă cu o lungime de undă mai scurtă și mai multă energie decât razele de lumină violetă este emisă de hidrogen în partea interioară a atmosferei Soarelui (cromosferă), iar radiația de raze X, care are o energie și mai mare, este emisă de gazele din exteriorul Soarelui. coajă (corona).

Starea normală (medie) a ionosferei se datorează radiației puternice constante. În ionosfera normală apar schimbări regulate sub influența rotației zilnice a Pământului și a diferențelor sezoniere în unghiul de incidență a razelor solare la amiază, dar apar și schimbări imprevizibile și bruște ale stării ionosferei.

Tulburări în ionosferă.

După cum se știe, la Soare apar manifestări puternice de activitate care se repetă ciclic, care ating un maxim la fiecare 11 ani. Observațiile din programul Anului Geofizic Internațional (IGY) au coincis cu perioada celei mai mari activități solare pentru întreaga perioadă de observații meteorologice sistematice, i.e. de la începutul secolului al XVIII-lea. În perioadele de mare activitate, luminozitatea unor zone de pe Soare crește de câteva ori, iar puterea radiațiilor ultraviolete și a razelor X crește brusc. Astfel de fenomene se numesc erupții solare. Acestea durează de la câteva minute la una sau două ore. În timpul unei erupții, plasma solară erupe (în principal protoni și electroni), iar particulele elementare se repezi în spațiul cosmic. Radiația electromagnetică și corpusculară a Soarelui în momentele unor astfel de erupții au un efect puternic asupra atmosferei Pământului.

Reacția inițială este observată la 8 minute după fulger, când radiațiile intense ultraviolete și cu raze X ajung pe Pământ. Ca urmare, ionizarea crește brusc; razele X pătrund în atmosferă până la limita inferioară a ionosferei; numărul de electroni din aceste straturi crește atât de mult încât semnalele radio sunt aproape complet absorbite („stinse”). Absorbția suplimentară a radiațiilor determină încălzirea gazului, ceea ce contribuie la dezvoltarea vântului. Gazul ionizat este un conductor electric, iar atunci când se mișcă în câmpul magnetic al Pământului, apare și apare efectul dinam. electricitate. Astfel de curenți pot provoca, la rândul lor, perturbări vizibile ale câmpului magnetic și se pot manifesta sub formă de furtuni magnetice.

Structura și dinamica atmosferei superioare este determinată în esență de procese de neechilibru termodinamic asociate cu ionizarea și disocierea de către radiația solară, procese chimice, excitarea moleculelor și atomilor, dezactivarea lor, ciocnirea și alte procese elementare. În acest caz, gradul de dezechilibru crește odată cu înălțimea pe măsură ce densitatea scade. Până la altitudini de 500–1000 km, și adesea chiar mai mari, gradul de dezechilibru pentru multe caracteristici ale atmosferei superioare este suficient de mic, ceea ce permite folosirea hidrodinamicii clasice și hidromagnetice cu acordarea reacțiilor chimice pentru a o descrie.

Exosfera este stratul exterior al atmosferei Pământului, începând de la altitudini de câteva sute de kilometri, din care atomii de hidrogen ușori, cu mișcare rapidă, pot scăpa în spațiul cosmic.

Edward Kononovici

Literatură:

Pudovkin M.I. Fundamentele fizicii solare. Sankt Petersburg, 2001
Eris Chaisson, Steve McMillan Astronomia azi. Prentice Hall Inc. Râul Upper Saddle, 2002
Materiale online: http://ciencia.nasa.gov/



Atmosfera(din grecescul atmos - abur și spharia - minge) - învelișul de aer al Pământului, care se rotește odată cu acesta. Dezvoltarea atmosferei a fost strâns legată de procesele geologice și geochimice care au loc pe planeta noastră, precum și de activitățile organismelor vii.

Limita inferioară a atmosferei coincide cu suprafața Pământului, deoarece aerul pătrunde în cei mai mici pori din sol și este dizolvat chiar și în apă.

Limita superioară la o altitudine de 2000-3000 km trece treptat în spațiul cosmic.

Atmosfera bogată în oxigen face posibilă viața pe Pământ. Oxigenul atmosferic este utilizat în procesul de respirație de către oameni, animale și plante.

Dacă nu ar exista atmosferă, Pământul ar fi la fel de liniștit ca luna. La urma urmei, sunetul este vibrația particulelor de aer. Culoarea albastră a cerului se explică prin faptul că razele soarelui, trecând prin atmosferă, parcă printr-o lentilă, sunt descompuse în culorile lor componente. În acest caz, razele de culori albastre și albastre sunt împrăștiate cel mai mult.

Atmosfera reține cea mai mare parte a radiațiilor ultraviolete de la Soare, ceea ce are un efect dăunător asupra organismelor vii. De asemenea, menține căldura la suprafața Pământului, împiedicând răcirea planetei noastre.

Structura atmosferei

În atmosferă pot fi distinse mai multe straturi, care diferă ca densitate și densitate (Fig. 1).

troposfera

troposfera- cel mai de jos strat al atmosferei, a cărui grosime deasupra polilor este de 8-10 km, la latitudini temperate - 10-12 km, iar deasupra ecuatorului - 16-18 km.

Orez. 1. Structura atmosferei Pământului

Aerul din troposferă este încălzit de la suprafața pământului, adică de pe pământ și apă. Prin urmare, temperatura aerului din acest strat scade odată cu înălțimea cu o medie de 0,6 °C la fiecare 100 m. La limita superioară a troposferei, ajunge la -55 °C. În același timp, în regiunea ecuatorului de la limita superioară a troposferei, temperatura aerului este de -70 °С, iar în regiunea Polului Nord -65 °С.

Aproximativ 80% din masa atmosferei este concentrată în troposferă, aproape toți vaporii de apă sunt localizați, au loc furtuni, furtuni, nori și precipitații și are loc mișcarea aerului pe verticală (convecție) și orizontală (vânt).

Putem spune că vremea se formează mai ales în troposferă.

Stratosferă

Stratosferă- stratul atmosferei situat deasupra troposferei la o altitudine de 8 până la 50 km. Culoarea cerului în acest strat apare violet, ceea ce se explică prin rarefierea aerului, datorită căreia razele soarelui aproape că nu se împrăștie.

Stratosfera conține 20% din masa atmosferei. Aerul din acest strat este rarefiat, practic nu există vapori de apă și, prin urmare, norii și precipitațiile aproape că nu se formează. Cu toate acestea, în stratosferă se observă curenți de aer stabili, a căror viteză atinge 300 km/h.

Acest strat este concentrat ozon(ecran de ozon, ozonosferă), un strat care absoarbe razele ultraviolete, împiedicându-le să treacă pe Pământ și protejând astfel organismele vii de pe planeta noastră. Din cauza ozonului, temperatura aerului la limita superioară a stratosferei este în intervalul de la -50 la 4-55 °C.

Între mezosferă și stratosferă există o zonă de tranziție - stratopauza.

Mezosfera

Mezosfera- un strat al atmosferei situat la o altitudine de 50-80 km. Densitatea aerului aici este de 200 de ori mai mică decât la suprafața Pământului. Culoarea cerului în mezosferă apare neagră, stelele sunt vizibile în timpul zilei. Temperatura aerului scade la -75 (-90)°C.

La o altitudine de 80 km începe termosferă. Temperatura aerului din acest strat crește brusc la o înălțime de 250 m, apoi devine constantă: la o înălțime de 150 km ajunge la 220-240 °C; la o altitudine de 500-600 km depăşeşte 1500 °C.

În mezosferă și termosferă, sub acțiunea razelor cosmice, moleculele de gaz se descompun în particule încărcate (ionizate) de atomi, așa că această parte a atmosferei se numește ionosferă- un strat de aer foarte rarefiat, situat la o altitudine de 50 până la 1000 km, format în principal din atomi de oxigen ionizat, molecule de oxid nitric și electroni liberi. Acest strat este caracterizat de o electrificare ridicată, iar undele radio lungi și medii sunt reflectate din el, ca dintr-o oglindă.

În ionosferă apar aurore - strălucirea gazelor rarefiate sub influența particulelor încărcate electric care zboară de la Soare - și se observă fluctuații bruște ale câmpului magnetic.

Exosfera

Exosfera- stratul exterior al atmosferei, situat peste 1000 km. Acest strat mai este numit și sferă de împrăștiere, deoarece particulele de gaz se mișcă aici cu viteză mare și pot fi împrăștiate în spațiul cosmic.

Compoziția atmosferei

Atmosfera este un amestec de gaze format din azot (78,08%), oxigen (20,95%), dioxid de carbon (0,03%), argon (0,93%), o cantitate mică de heliu, neon, xenon, cripton (0,01%), ozon și alte gaze, dar conținutul lor este neglijabil (Tabelul 1). Compoziția modernă a aerului Pământului a fost stabilită cu mai bine de o sută de milioane de ani în urmă, dar activitatea de producție umană crescută brusc a dus totuși la schimbarea acesteia. În prezent, există o creștere a conținutului de CO 2 cu aproximativ 10-12%.

Gazele care alcătuiesc atmosfera îndeplinesc diverse roluri funcționale. Totuși, semnificația principală a acestor gaze este determinată în primul rând de faptul că ele absorb foarte puternic energia radiantă și astfel au un efect semnificativ asupra regimului de temperatură al suprafeței și atmosferei Pământului.

Tabelul 1. Compoziție chimică aer atmosferic uscat lângă suprafața pământului

Concentrarea volumului. %

Greutate moleculară, unități

Oxigen

Dioxid de carbon

Oxid de azot

0 până la 0,00001

Dioxid de sulf

de la 0 la 0,000007 vara;

0 până la 0,000002 iarna

De la 0 la 0,000002

46,0055/17,03061

dioxid de azog

Monoxid de carbon

Azot, cel mai comun gaz din atmosferă, puțin activ din punct de vedere chimic.

Oxigen, spre deosebire de azot, este un element foarte activ din punct de vedere chimic. Funcția specifică a oxigenului este oxidarea materiei organice a organismelor heterotrofe, a rocilor și a gazelor incomplet oxidate emise în atmosferă de vulcani. Fără oxigen, nu ar exista descompunerea materiei organice moarte.

Rolul dioxidului de carbon în atmosferă este excepțional de mare. Intră în atmosferă ca urmare a proceselor de ardere, respirație a organismelor vii, degradare și este, în primul rând, principalul material de construcție pentru crearea materiei organice în timpul fotosintezei. În plus, proprietatea dioxidului de carbon de a transmite radiația solară cu undă scurtă și de a absorbi o parte din radiația termică de undă lungă este de mare importanță, ceea ce va crea așa-numitul efect de seră, care va fi discutat mai jos.

Influența asupra proceselor atmosferice, în special asupra regimului termic al stratosferei, este exercitată și de ozon. Acest gaz servește ca un absorbant natural al radiației ultraviolete solare, iar absorbția radiației solare duce la încălzirea aerului. Valorile medii lunare ale conținutului total de ozon din atmosferă variază în funcție de latitudinea zonei și de sezon în intervalul 0,23-0,52 cm (aceasta este grosimea stratului de ozon la presiunea solului și la temperatură). Există o creștere a conținutului de ozon de la ecuator la poli și o variație anuală cu un minim toamna și un maxim primăvara.

O proprietate caracteristică a atmosferei poate fi numită faptul că conținutul gazelor principale (azot, oxigen, argon) se modifică ușor cu înălțimea: la o altitudine de 65 km în atmosferă, conținutul de azot este de 86%, oxigen - 19, argon - 0,91, la o altitudine de 95 km - azot 77, oxigen - 21,3, argon - 0,82%. Constanța compoziției aerului atmosferic pe verticală și pe orizontală este menținută prin amestecarea acestuia.

Pe lângă gaze, aerul conține vapor de apăȘi particule solide. Acestea din urmă pot avea origine atât naturală, cât și artificială (antropică). Acestea sunt polen de flori, cristale de sare minuscule, praf de drum, impurități de aerosoli. Când razele soarelui pătrund pe fereastră, pot fi văzute cu ochiul liber.

În aerul orașelor și al marilor centre industriale există în special multe particule în suspensie, unde emisiile de gaze nocive și impuritățile acestora formate în timpul arderii combustibilului sunt adăugate aerosolilor.

Concentrația de aerosoli în atmosferă determină transparența aerului, care afectează radiația solară care ajunge la suprafața Pământului. Cei mai mari aerosoli sunt nucleele de condensare (din lat. condensatie- compactare, îngroșare) - contribuie la transformarea vaporilor de apă în picături de apă.

Valoarea vaporilor de apă este determinată în primul rând de faptul că întârzie radiația termică cu undă lungă a suprafeței pământului; reprezintă veriga principală a ciclurilor mari și mici de umiditate; ridică temperatura aerului atunci când paturile de apă se condensează.

Cantitatea de vapori de apă din atmosferă variază în timp și spațiu. Astfel, concentrația vaporilor de apă în apropierea suprafeței pământului variază de la 3% la tropice până la 2-10 (15)% în Antarctica.

Conținutul mediu de vapori de apă în coloana verticală a atmosferei la latitudini temperate este de aproximativ 1,6-1,7 cm (un strat de vapori de apă condensați va avea o astfel de grosime). Informațiile despre vaporii de apă din diferite straturi ale atmosferei sunt contradictorii. S-a presupus, de exemplu, că în intervalul de altitudine de la 20 la 30 km, umiditatea specifică crește puternic odată cu înălțimea. Cu toate acestea, măsurătorile ulterioare indică o uscăciune mai mare a stratosferei. Aparent, umiditatea specifică din stratosferă depinde puțin de înălțime și se ridică la 2-4 mg/kg.

Variabilitatea conținutului de vapori de apă în troposferă este determinată de interacțiunea dintre evaporare, condensare și transport orizontal. Ca urmare a condensării vaporilor de apă, se formează nori și apar precipitații sub formă de ploaie, grindină și zăpadă.

Procesele de tranziție de fază ale apei se desfășoară în principal în troposferă, motiv pentru care norii din stratosferă (la altitudini de 20-30 km) și mezosferă (în apropierea mezopauzei), numiți sidef și argint, sunt observați relativ rar. , în timp ce norii troposferici acoperă adesea aproximativ 50% din întreaga suprafață a pământului.

Cantitatea de vapori de apă care poate fi conținută în aer depinde de temperatura aerului.

1 m 3 de aer la o temperatură de -20 ° C nu poate conține mai mult de 1 g de apă; la 0 °C - nu mai mult de 5 g; la +10 °С - nu mai mult de 9 g; la +30 °С - nu mai mult de 30 g de apă.

Ieșire: Cu cât temperatura aerului este mai mare, cu atât poate conține mai mulți vapori de apă.

Aerul poate fi bogatȘi nu saturate aburi. Deci, dacă la o temperatură de +30 ° C 1 m 3 de aer conține 15 g de vapori de apă, aerul nu este saturat cu vapori de apă; dacă 30 g - saturată.

Umiditate absolută- aceasta este cantitatea de vapori de apa continuta in 1 m 3 de aer. Se exprimă în grame. De exemplu, dacă se spune „umiditatea absolută este 15”, atunci aceasta înseamnă că 1 ml conține 15 g de vapori de apă.

Umiditate relativă- acesta este raportul (în procente) dintre conținutul real de vapori de apă din 1 m 3 de aer și cantitatea de vapori de apă care poate fi conținut în 1 m L la o temperatură dată. De exemplu, dacă radioul în timpul transmiterii buletinului meteo a raportat că umiditatea relativă este de 70%, aceasta înseamnă că aerul conține 70% din vaporii de apă pe care îi poate reține la o anumită temperatură.

Cu cât umiditatea relativă a aerului este mai mare, t. cu cât aerul este mai aproape de saturație, cu atât este mai probabil să cadă.

În zona ecuatorială se observă întotdeauna o umiditate relativă ridicată (până la 90%) căldură aer și are loc o mare evaporare de la suprafața oceanelor. Aceeași umiditate relativă ridicată este și în regiunile polare, dar numai pentru că la temperaturi scăzute chiar și o cantitate mică de vapori de apă face ca aerul să fie saturat sau aproape de saturație. În latitudinile temperate, umiditatea relativă variază sezonier - este mai mare iarna și mai scăzută vara.

Umiditatea relativă a aerului este deosebit de scăzută în deșerturi: 1 m 1 de aer acolo conține de două până la trei ori mai puțin decât cantitatea de vapori de apă posibilă la o anumită temperatură.

Pentru a măsura umiditatea relativă, se folosește un higrometru (din grecescul hygros - umed și metreco - măsoară).

Când este răcit, aerul saturat nu poate reține aceeași cantitate de vapori de apă în sine, se îngroașă (condensează), transformându-se în picături de ceață. Ceața poate fi observată vara într-o noapte senină și răcoroasă.

nori- aceasta este aceeași ceață, doar că se formează nu la suprafața pământului, ci la o anumită înălțime. Pe măsură ce aerul se ridică, se răcește și vaporii de apă din el se condensează. Picăturile mici de apă rezultate formează norii.

implicate în formarea norilor particule în suspensie suspendat în troposferă.

Norii pot avea o formă diferită, care depinde de condițiile formării lor (Tabelul 14).

Norii cei mai jos și cei mai grei sunt stratus. Sunt situate la o altitudine de 2 km de suprafața pământului. La o altitudine de 2 până la 8 km, pot fi observați nori cumuluși mai pitorești. Cei mai înalți și mai ușori sunt norii cirus. Sunt situate la o altitudine de 8 până la 18 km deasupra suprafeței pământului.

familii

Soiuri de nori

Aspect

A. Nori de sus - peste 6 km

I. Pinnate

Filiforme, fibroase, albe

II. cirrocumulus

Straturi și creste de mici fulgi și bucle, albe

III. Cirrostratus

Voal albicios transparent

B. Norii stratului mijlociu - peste 2 km

IV. Altocumulus

Straturi și creste de alb și gri

V. Altostratificat

Voal neted de culoare gri lăptos

B. Nori de jos - până la 2 km

VI. Nimbostratus

Strat solid, gri, fără formă

VII. Stratocumulus

Straturi opace și creste gri

VIII. stratificată

Voal gri iluminat

D. Norii de dezvoltare verticală - de la nivelul inferior spre cel superior

IX. Cumulus

Treci și cupole albe strălucitoare, cu margini rupte în vânt

X. Cumulonimbus

Mase puternice în formă de cumulus de culoare plumb închisă

Protectie atmosferica

Principalele surse sunt întreprinderile industriale și automobile. În orașele mari, problema contaminării cu gaze a principalelor rute de transport este foarte acută. De aceea, în multe orașe mari ale lumii, inclusiv în țara noastră, a fost introdus controlul de mediu al toxicității gazelor de eșapament auto. Potrivit experților, fumul și praful din aer pot înjumătăți fluxul de energie solară către suprafața pământului, ceea ce va duce la o schimbare a condițiilor naturale.