Prisma laterală S. Prismă (matematică)

Definiție 1. Suprafață prismatică
Teorema 1. Pe secțiuni paralele ale unei suprafețe prismatice
Definiție 2. Secțiune perpendiculară a unei suprafețe prismatice
Definiție 3. Prismă
Definiție 4. Înălțimea prismei
Definiție 5. Prismă directă
Teorema 2. Aria suprafeței laterale a prismei

Paralelepiped:
Definiție 6. Paralelepiped
Teorema 3. La intersecția diagonalelor unui paralelipiped
Definiție 7. Paralepiped drept
Definiție 8. Paralepiped dreptunghiular
Definiție 9. Dimensiunile unui paralelipiped
Definiție 10. Cub
Definiție 11. Romboedru
Teorema 4. Pe diagonalele unui paralelipiped dreptunghic
Teorema 5. Volumul unei prisme
Teorema 6. Volumul unei prisme drepte
Teorema 7. Volumul unui paralelipiped dreptunghic

prismă se numește poliedru, în care două fețe (baze) se află în planuri paralele, iar muchiile care nu se află în aceste fețe sunt paralele între ele.
Se numesc fețe altele decât bazele lateral.
Laturile fețelor laterale și ale bazelor se numesc marginile prismei, se numesc capetele marginilor vârfurile prismei. Coastele laterale numite muchii care nu apartin bazelor. Unirea fețelor laterale se numește suprafața laterală a prismei, iar unirea tuturor fețelor se numește suprafața completă a prismei. Înălțimea prismei numită perpendiculară căzută din punctul bazei superioare până în planul bazei inferioare sau lungimea acestei perpendiculare. prismă dreaptă numită prismă, în care marginile laterale sunt perpendiculare pe planurile bazelor. corect numită prismă dreaptă (fig. 3), la baza căreia se află un poligon regulat.

Denumiri:
l - coastă laterală;
P - perimetrul bazei;
S o - zona de bază;
H - înălțime;
P ^ - perimetrul secțiunii perpendiculare;
S b - suprafata laterala;
V - volum;
S p - aria suprafeței totale a prismei.

V=SH
S p \u003d S b + 2S o
S b = P^l

Definiția 1 . O suprafață prismatică este o figură formată din părți din mai multe plane paralele cu o dreaptă limitată de acele drepte de-a lungul cărora aceste plane se intersectează succesiv *; aceste drepte sunt paralele între ele și se numesc marginile suprafeţei prismatice.
*Se presupune că la fiecare două plane consecutive se intersectează și că ultimul plan îl intersectează pe primul.

Teorema 1 . Secțiunile unei suprafețe prismatice prin plane paralele între ele (dar nu paralele cu marginile acesteia) sunt poligoane egale.
Fie ABCDE și A"B"C"D"E" secțiuni ale unei suprafețe prismatice pe două plane paralele. Pentru a verifica dacă aceste două poligoane sunt egale, este suficient să arătăm că triunghiurile ABC și A"B"C" sunt egale și au același sens de rotație și că același sens este valabil și pentru triunghiurile ABD și A"B"D", ABE și A"B"E". Dar laturile corespunzătoare ale acestor triunghiuri sunt paralele (de exemplu, AC este paralelă cu A „C”) ca linii de intersecție ale unui anumit plan cu două plane paralele; rezultă că aceste laturi sunt egale (de exemplu, AC este egal cu A"C") ca laturi opuse ale unui paralelogram și că unghiurile formate de aceste laturi sunt egale și au aceeași direcție.

Definiția 2 . O secțiune perpendiculară a unei suprafețe prismatice este o secțiune a acestei suprafețe printr-un plan perpendicular pe marginile sale. Pe baza teoremei anterioare, toate secțiunile perpendiculare ale aceleiași suprafețe prismatice vor fi poligoane egale.

Definiția 3 . O prismă este un poliedru delimitat de o suprafață prismatică și două plane paralele între ele (dar nu paralele cu marginile suprafeței prismatice)
Se numesc chipurile situate în aceste ultime planuri baze de prisme; fețe aparținând unei suprafețe prismatice - fetele laterale; marginile suprafeței prismatice - marginile laterale ale prismei. În virtutea teoremei anterioare, bazele prismei sunt poligoane egale. Toate fețele laterale ale prismei paralelograme; toate marginile laterale sunt egale între ele.
Este evident că dacă baza prismei ABCDE și una dintre muchiile AA" sunt date ca mărime și direcție, atunci este posibil să se construiască o prismă prin desenarea muchiilor BB", CC", .., egale și paralele cu marginea AA”.

Definiția 4 . Înălțimea unei prisme este distanța dintre planele bazelor sale (HH").

Definiția 5 . O prismă se numește linie dreaptă dacă bazele ei sunt secțiuni perpendiculare ale unei suprafețe prismatice. În acest caz, înălțimea prismei este, desigur, a acesteia coastă laterală; marginile laterale vor dreptunghiuri.
Prismele pot fi clasificate după numărul de fețe laterale, egal cu numărul de laturi ale poligonului care îi servește drept bază. Astfel, prismele pot fi triunghiulare, patrulatere, pentagonale etc.

Teorema 2 . Aria suprafeței laterale a prismei este egală cu produsul marginii laterale și perimetrul secțiunii perpendiculare.
Fie ABCDEA"B"C"D"E" prisma dată și abcde secțiunea ei perpendiculară, astfel încât segmentele ab, bc, .. să fie perpendiculare pe marginile sale laterale. Fața ABA"B" este un paralelogram; aria sa este egal cu produsul bazei AA „ cu o înălțime care se potrivește cu ab; aria feței BCV "C" este egală cu produsul bazei BB" cu înălțimea bc etc. Prin urmare, suprafața laterală (adică suma suprafețelor fețelor laterale) este egal cu produsul muchiei laterale, cu alte cuvinte, lungimea totală a segmentelor AA", BB", .., cu suma ab+bc+cd+de+ea.

prismă se numește poliedru ale cărui două fețe sunt n-goni egale (motive) , situate în planuri paralele, iar cele n fețe rămase sunt paralelograme (margini laterale) . Coastă laterală prisma este partea feței laterale care nu aparține bazei.

O prismă ale cărei margini laterale sunt perpendiculare pe planurile bazelor se numește Drept prismă (fig. 1). Dacă marginile laterale nu sunt perpendiculare pe planurile bazelor, atunci se numește prisma oblic . corect O prismă este o prismă dreaptă ale cărei baze sunt poligoane regulate.

Înălţime prisma se numeste distanta dintre planele bazelor. Diagonală O prismă este un segment care leagă două vârfuri care nu aparțin aceleiași fețe. secțiune diagonală Se numește o secțiune a unei prisme printr-un plan care trece prin două margini laterale care nu aparțin aceleiași fețe. Secțiune perpendiculară numită secțiunea prismei printr-un plan perpendicular pe marginea laterală a prismei.

Suprafata laterala prisma este suma ariilor tuturor fețelor laterale. Suprafata intreaga se numește suma ariilor tuturor fețelor prismei (adică suma ariilor fețelor laterale și a ariilor bazelor).

Pentru o prismă arbitrară, formulele sunt adevărate:

Unde l este lungimea coastei laterale;

H- inaltime;

P

Q

partea S

S plin

S principal este aria bazelor;

V este volumul prismei.

Pentru o prismă dreaptă, următoarele formule sunt adevărate:

Unde p- perimetrul bazei;

l este lungimea coastei laterale;

H- înălțime.

Paralelipiped Se numește o prismă a cărei bază este un paralelogram. Se numește paralelipiped ale cărui margini laterale sunt perpendiculare pe baze direct (Fig. 2). Dacă marginile laterale nu sunt perpendiculare pe baze, atunci se numește paralelipiped oblic . Un paralelipiped drept a cărui bază este un dreptunghi se numește dreptunghiular. Se numește paralelipiped dreptunghic în care toate muchiile sunt egale cub.

Se numesc fețele unui paralelipiped care nu au vârfuri comune opus . Lungimile muchiilor care emană de la un vârf sunt numite măsurători paralelipiped. Deoarece cutia este o prismă, elementele sale principale sunt definite în același mod în care sunt definite pentru prisme.

Teoreme.

1. Diagonalele paralelipipedului se intersectează într-un punct și îl bisectează.

2. Într-un paralelipiped dreptunghiular, pătratul lungimii diagonalei este egal cu suma pătratelor celor trei dimensiuni ale sale:

3. Toate cele patru diagonale ale unui paralelipiped dreptunghiular sunt egale între ele.

Pentru un paralelipiped arbitrar, următoarele formule sunt adevărate:

Unde l este lungimea coastei laterale;

H- inaltime;

P este perimetrul secțiunii perpendiculare;

Q– Aria secțiunii perpendiculare;

partea S este aria suprafeței laterale;

S plin este suprafața totală;

S principal este aria bazelor;

V este volumul prismei.

Pentru un paralelipiped drept, următoarele formule sunt adevărate:

Unde p- perimetrul bazei;

l este lungimea coastei laterale;

H este înălțimea paralelipipedului drept.

Pentru un paralelipiped dreptunghic, următoarele formule sunt adevărate:

(3)

Unde p- perimetrul bazei;

H- inaltime;

d- diagonala;

a,b,c– măsurători ale unui paralelipiped.

Formulele corecte pentru un cub sunt:

Unde A este lungimea coastei;

d este diagonala cubului.

Exemplul 1 Diagonala unui cuboid dreptunghiular este de 33 dm, iar măsurătorile sale sunt legate ca 2: 6: 9. Aflați măsurătorile cuboidului.

Decizie. Pentru a afla dimensiunile paralelipipedului, folosim formula (3), i.e. faptul că pătratul ipotenuzei unui cuboid este egal cu suma pătratelor dimensiunilor acestuia. Notează prin k coeficient de proporționalitate. Atunci dimensiunile paralelipipedului vor fi egale cu 2 k, 6kși 9 k. Scriem formula (3) pentru datele problemei:

Rezolvarea acestei ecuații pentru k, primim:

Prin urmare, dimensiunile paralelipipedului sunt de 6 dm, 18 dm și 27 dm.

Răspuns: 6 dm, 18 dm, 27 dm.

Exemplul 2 Aflați volumul unei prisme triunghiulare înclinate a cărei bază este un triunghi echilateral cu latura de 8 cm, dacă muchia laterală este egală cu latura bazei și este înclinată la un unghi de 60º față de bază.

Decizie . Să facem un desen (Fig. 3).

Pentru a găsi volumul unei prisme înclinate, trebuie să cunoașteți aria bazei și înălțimii de biți. Aria bazei acestei prisme este aria unui triunghi echilateral cu latura de 8 cm. Să o calculăm:

Înălțimea unei prisme este distanța dintre bazele sale. De sus DAR 1 a bazei superioare coborâm perpendiculara pe planul bazei inferioare DAR 1 D. Lungimea sa va fi înălțimea prismei. Luați în considerare D DAR 1 ANUNȚ: deoarece acesta este unghiul de înclinare al nervurii laterale DAR 1 DAR la planul de bază DAR 1 DAR= 8 cm.Din acest triunghi găsim DAR 1 D:

Acum calculăm volumul folosind formula (1):

Răspuns: 192 cmc.

Exemplul 3 Marginea laterală a unei prisme hexagonale regulate este de 14 cm. Aria celei mai mari secțiuni diagonale este de 168 cm 2. Aflați aria suprafeței totale a prismei.

Decizie. Să facem un desen (Fig. 4)


Cea mai mare secțiune diagonală este un dreptunghi AA 1 DD 1 , deoarece diagonala ANUNȚ hexagon obișnuit ABCDEF este cel mai mare. Pentru a calcula suprafața laterală a unei prisme, este necesar să cunoașteți latura bazei și lungimea nervurii laterale.

Cunoscând aria secțiunii diagonale (dreptunghi), găsim diagonala bazei.

De atunci

De atunci AB= 6 cm.

Atunci perimetrul bazei este:

Găsiți aria suprafeței laterale a prismei:

Aria unui hexagon regulat cu latura de 6 cm este:

Aflați aria suprafeței totale a prismei:

Răspuns:

Exemplul 4 Baza unui paralelipiped drept este un romb. Suprafețele secțiunilor diagonale sunt de 300 cm2 și 875 cm2. Găsiți aria suprafeței laterale a paralelipipedului.

Decizie. Să facem un desen (Fig. 5).

Indicați latura rombului prin A, diagonalele rombului d 1 și d 2, înălțimea cutiei h. Pentru a găsi suprafața laterală a unui paralelipiped drept, este necesar să înmulțiți perimetrul bazei cu înălțimea: (formula (2)). Perimetrul de bază p = AB + BC + CD + DA = 4AB = 4a, la fel de ABCD- romb. H = AA 1 = h. Acea. Trebuie să găsești Ași h.

Luați în considerare secțiunile diagonale. AA 1 SS 1 - un dreptunghi, o latură a căruia este diagonala unui romb AC = d 1, a doua margine laterală AA 1 = h, apoi

La fel și pentru secțiune BB 1 DD 1 obținem:

Folosind proprietatea unui paralelogram astfel încât suma pătratelor diagonalelor este egală cu suma pătratelor tuturor laturilor sale, obținem egalitatea. Obținem următoarele.

Definiție.

Acesta este un hexagon, ale cărui baze sunt două pătrate egale, iar fețele laterale sunt dreptunghiuri egale.

Coastă laterală este partea comună a două fețe laterale adiacente

Înălțimea prismei este un segment de dreaptă perpendicular pe bazele prismei

Diagonala prismei- un segment care leagă două vârfuri ale bazelor care nu aparțin aceleiași fețe

Planul diagonal- un plan care trece prin diagonala prismei și marginile sale laterale

Secțiune diagonală- limitele de intersectie a prismei si a planului diagonal. Secțiunea diagonală a unei prisme patruunghiulare obișnuite este un dreptunghi

Secțiune perpendiculară (secțiune ortogonală)- aceasta este intersecția unei prisme și a unui plan desenat perpendicular pe marginile sale laterale

Elemente ale unei prisme patruunghiulare regulate

Figura prezintă două prisme patrulatere regulate, care sunt marcate cu literele corespunzătoare:

  • Bazele ABCD și A 1 B 1 C 1 D 1 sunt egale și paralele între ele
  • Fețele laterale AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C și CC 1 D 1 D, fiecare dintre acestea fiind dreptunghi
  • Suprafața laterală - suma suprafețelor tuturor fețelor laterale ale prismei
  • Suprafața totală - suma suprafețelor tuturor bazelor și fețelor laterale (suma suprafeței și bazelor laterale)
  • Nervurile laterale AA 1 , BB 1 , CC 1 și DD 1 .
  • Diagonala B 1 D
  • Diagonala bazei BD
  • Secțiunea diagonală BB 1 D 1 D
  • Secţiune perpendiculară A 2 B 2 C 2 D 2 .

Proprietățile unei prisme patruunghiulare regulate

  • Bazele sunt două pătrate egale
  • Bazele sunt paralele între ele
  • Laturile sunt dreptunghiuri.
  • Fețele laterale sunt egale între ele
  • Fețele laterale sunt perpendiculare pe baze
  • Coastele laterale sunt paralele între ele și egale
  • Secțiune perpendiculară perpendiculară pe toate nervurile laterale și paralelă cu bazele
  • Unghiuri de secțiune perpendiculară - Dreapta
  • Secțiunea diagonală a unei prisme patruunghiulare obișnuite este un dreptunghi
  • Perpendiculară (secțiune ortogonală) paralelă cu bazele

Formule pentru o prismă patruunghiulară obișnuită

Instructiuni pentru rezolvarea problemelor

La rezolvarea problemelor pe tema " prismă patruunghiulară regulată" implică faptul că:

Prisma corectă- o prismă la baza căreia se află un poligon regulat, iar marginile laterale sunt perpendiculare pe planurile bazei. Adică o prismă patruunghiulară obișnuită conține la bază pătrat. (vezi mai sus proprietățile unei prisme patruunghiulare obișnuite) Notă. Aceasta face parte din lecția cu sarcini de geometrie (secțiunea geometrie solidă - prismă). Iată sarcinile care provoacă dificultăți în rezolvare. Dacă trebuie să rezolvați o problemă de geometrie, care nu este aici - scrieți despre ea pe forum. Pentru a desemna acțiunea de extragere a rădăcinii pătrate în rezolvarea problemelor, se folosește simbolul√ .

Sarcină.

Într-o prismă pătrangulară obișnuită, aria bazei este de 144 cm 2 și înălțimea este de 14 cm. Aflați diagonala prismei și aria totală a suprafeței.

Decizie.
Un patrulater regulat este un pătrat.
În consecință, latura bazei va fi egală cu

144 = 12 cm.
De unde diagonala bazei unei prisme dreptunghiulare regulate va fi egală cu
√(12 2 + 12 2 ) = √288 = 12√2

Diagonala unei prisme regulate formează un triunghi dreptunghic cu diagonala bazei și înălțimea prismei. În consecință, conform teoremei lui Pitagora, diagonala unei prisme pătraunghiulare regulate va fi egală cu:
√((12√2) 2 + 14 2 ) = 22 cm

Răspuns: 22 cm

Sarcină

Aflați aria suprafeței totale a unei prisme patrulatere obișnuite dacă diagonala acesteia este de 5 cm și diagonala feței laterale este de 4 cm.

Decizie.
Deoarece baza unei prisme patruunghiulare obișnuite este un pătrat, atunci latura bazei (notată cu a) este găsită de teorema lui Pitagora:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Înălțimea feței laterale (notată cu h) va fi atunci egală cu:

H 2 + 12,5 \u003d 4 2
h 2 + 12,5 = 16
h 2 \u003d 3,5
h = √3,5

Suprafața totală va fi egală cu suma suprafeței laterale și de două ori suprafața de bază

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S \u003d 25 + 10√7 ≈ 51,46 cm 2.

Răspuns: 25 + 10√7 ≈ 51,46 cm 2.

În programa școlară pentru cursul de geometrie solidă, studiul figurilor tridimensionale începe de obicei cu un corp geometric simplu - un poliedru prismă. Rolul bazelor sale este îndeplinit de 2 poligoane egale situate în planuri paralele. Un caz special este o prismă patruunghiulară obișnuită. Bazele sale sunt 2 patrulatere regulate identice, față de care laturile sunt perpendiculare, având formă de paralelograme (sau dreptunghiuri dacă prisma nu este înclinată).

Cum arată o prismă

O prismă patruunghiulară obișnuită este un hexaedru, la bazele căruia sunt 2 pătrate, iar fețele laterale sunt reprezentate prin dreptunghiuri. Un alt nume pentru această figură geometrică este paralelipiped drept.

Figura, care înfățișează o prismă patruunghiulară, este prezentată mai jos.

Se vede si in poza cele mai importante elemente care alcătuiesc un corp geometric. Ele sunt denumite în mod obișnuit ca:

Uneori, în problemele de geometrie, puteți găsi conceptul de secțiune. Definiția va suna astfel: o secțiune reprezintă toate punctele unui corp volumetric care aparțin planului de tăiere. Secțiunea este perpendiculară (traversează marginile figurii la un unghi de 90 de grade). Pentru o prismă dreptunghiulară se are în vedere și o secțiune diagonală (numărul maxim de secțiuni care pot fi construite este de 2), trecând prin 2 muchii și diagonalele bazei.

Dacă secțiunea este desenată în așa fel încât planul de tăiere să nu fie paralel nici cu bazele, nici cu fețele laterale, rezultatul este o prismă trunchiată.

Pentru a găsi elementele prismatice reduse sunt folosite diverse rapoarte și formule. Unele dintre ele sunt cunoscute din cursul planimetriei (de exemplu, pentru a găsi aria bazei unei prisme, este suficient să amintim formula pentru aria unui pătrat).

Suprafața și volumul

Pentru a determina volumul unei prisme folosind formula, trebuie să cunoașteți aria bazei și înălțimea biților:

V = Sprim h

Deoarece baza unei prisme tetraedrice obișnuite este un pătrat cu latura A, Puteți scrie formula într-o formă mai detaliată:

V = a² h

Dacă vorbim despre un cub - o prismă regulată cu lungime, lățime și înălțime egale, volumul se calculează după cum urmează:

Pentru a înțelege cum să găsiți suprafața laterală a unei prisme, trebuie să vă imaginați măturarea acesteia.

Din desen se poate observa că suprafața laterală este formată din 4 dreptunghiuri egale. Aria sa este calculată ca produsul dintre perimetrul bazei și înălțimea figurii:

Sside = Poz h

Deoarece perimetrul unui pătrat este P = 4a, formula ia forma:

Sside = 4a h

Pentru cub:

Sside = 4a²

Pentru a calcula suprafața totală a unei prisme, adăugați 2 zone de bază în zona laterală:

Plin = Sside + 2Sbase

Așa cum este aplicată unei prisme regulate patruunghiulare, formula are forma:

Sfull = 4a h + 2a²

Pentru suprafața unui cub:

Plin = 6a²

Cunoscând volumul sau suprafața, puteți calcula elementele individuale ale unui corp geometric.

Găsirea elementelor prisme

Adesea apar probleme in care se da volumul sau se cunoaste valoarea suprafetei laterale, unde este necesar sa se determine lungimea laturii bazei sau inaltimea. În astfel de cazuri, formulele pot fi derivate:

  • lungimea laturii de baza: a = Sside / 4h = √(V / h);
  • înălțime sau lungimea coastei laterale: h = Latura / 4a = V / a²;
  • suprafata de baza: Sprim = V/h;
  • zona feței laterale: Latură gr = Sside / 4.

Pentru a determina câtă zonă are o secțiune diagonală, trebuie să cunoașteți lungimea diagonalei și înălțimea figurii. Pentru un pătrat d = a√2. Prin urmare:

Sdiag = ah√2

Pentru a calcula diagonala prismei se folosește formula:

dprize = √(2a² + h²)

Pentru a înțelege cum să aplicați rapoartele de mai sus, puteți exersa și rezolva câteva sarcini simple.

Exemple de probleme cu soluții

Iată câteva dintre sarcinile care apar la examenele finale de stat la matematică.

Exercitiul 1.

Nisipul este turnat într-o cutie în formă de prismă pătrangulară obișnuită. Înălțimea nivelului său este de 10 cm.Care va fi nivelul nisipului dacă îl mutați într-un recipient de aceeași formă, dar cu o lungime de bază de 2 ori mai mare?

Ar trebui argumentat după cum urmează. Cantitatea de nisip din primul și al doilea container nu s-a schimbat, adică volumul său în ele este același. Puteți defini lungimea bazei ca A. În acest caz, pentru prima casetă, volumul substanței va fi:

V₁ = ha² = 10a²

Pentru a doua cutie, lungimea bazei este 2a, dar înălțimea nivelului nisipului este necunoscută:

V₂ = h(2a)² = 4ha²

În măsura în care V₁ = V₂, expresiile pot fi echivalate:

10a² = 4ha²

După reducerea ambelor părți ale ecuației cu a², obținem:

Ca urmare, noul nivel de nisip va fi h = 10 / 4 = 2,5 cm.

Sarcina 2.

ABCDA₁B₁C₁D₁ este o prismă regulată. Se știe că BD = AB₁ = 6√2. Găsiți suprafața totală a corpului.

Pentru a înțelege mai ușor ce elemente sunt cunoscute, puteți desena o figură.

Deoarece vorbim despre o prismă regulată, putem concluziona că baza este un pătrat cu diagonala de 6√2. Diagonala feței laterale are aceeași valoare, prin urmare, fața laterală are și forma unui pătrat egal cu baza. Se dovedește că toate cele trei dimensiuni - lungime, lățime și înălțime - sunt egale. Putem concluziona că ABCDA₁B₁C₁D₁ este un cub.

Lungimea oricărei muchii este determinată prin diagonala cunoscută:

a = d / √2 = 6√2 / √2 = 6

Suprafața totală se găsește prin formula pentru cub:

Sfull = 6a² = 6 6² = 216


Sarcina 3.

Camera este in renovare. Se știe că podeaua are forma unui pătrat cu o suprafață de 9 m². Înălțimea camerei este de 2,5 m. Care este cel mai mic cost al tapetării unei camere dacă 1 m² costă 50 de ruble?

Deoarece podeaua și tavanul sunt pătrate, adică patrulatere regulate, iar pereții săi sunt perpendiculari pe suprafețele orizontale, putem concluziona că este o prismă regulată. Este necesar să se determine aria suprafeței sale laterale.

Lungimea camerei este a = √9 = 3 m.

Pătratul va fi acoperit cu tapet Latura = 4 3 2,5 = 30 m².

Cel mai mic cost al tapetului pentru această cameră va fi 50 30 = 1500 ruble.

Astfel, pentru a rezolva probleme pe o prismă dreptunghiulară, este suficient să poți calcula aria și perimetrul unui pătrat și a unui dreptunghi, precum și să cunoști formulele de aflare a volumului și a suprafeței.

Cum să găsiți aria unui cub