Виды и устройство газовых горелок. Тема: Классификация газогорелочных устройств

Среди различных видов горелок газовые являются наиболее востребованными. Это неудивительно, так как преимущества подобного оборудования очевидны. Можно с уверенностью утверждать: стоит купить газовую горелку, чтобы решать соответствующие задачи наиболее эффективно и рационально.

Основные преимущества газовых горелок:

  • надежность и простота в эксплуатации, в сравнении с такими устройствами, как мазутные горелки или горелки на жидком топливе;
  • газ является наиболее доступным с финансовой точки зрения видом топлива, если есть газовая магистраль, то никаких проблем с доставкой газа не будет;
  • современные модели газовых горелок комплектуются автоматизирующими их работу системами, что значительно улучшает эксплуатационные характеристики оборудования, делая его более безопасным, удобным, безотказным в работе;
  • большой диапазон мощностей горелок: среди представленного на современном рынке многообразия можно без труда найти и купить горелки для домашнего использования или, к примеру, горелки для крупных промышленных предприятий.

Однако о тех или иных достоинствах горелок уместно говорить только в том случае, если модель выбрана правильно. Подобрать необходимое оборудование позволяет четкое представление о том, какой тип горелки оптимален для использования в определенных условиях. Если учитывать существующую классификацию газовых горелок, сориентироваться будет проще.

Выделяют несколько оснований для разделения данного оборудования на группы.

1. По области применения

По этому признаку различают:

  • универсальные горелки, которые подойдут для большинства типов печей и топок;
  • специальные модели, которые были разработаны для использования в печах определенной конструкции.

Естественно, специальные горелки нужно использовать строго по назначению, помня о том, что они несовместимы с огневыми установками любого другого типа.

2. По методу получения топливной смеси

Газ в горелках в чистом виде не сжигается, он включен в состав топливной смеси вместе с воздухом. Образование топливной смеси может осуществляться различными способами. В зависимости от этого, горелки можно разделить на три группы:

  • инжекционные горелки, в которых подача воздуха осуществляется с помощью засасывания;
  • дутьевые горелки, в которых воздух подается нагнетанием;
  • диффузионные модели, для которых характерно естественное притекание воздуха к пламени.

Обычно инжекционные горелки являются частью котла, в то время как вентиляционные модели покупаются в качестве отдельного оборудования. С помощью дутьевой горелки может обеспечиваться плавное и максимально точное регулирование мощности работы оборудования, что позволяет увеличить КПД системы благодаря рациональному использованию топлива, то есть газа. При оптимальном режиме работы оборудования не только экономится топливо, но и углекислый газ поступает в окружающую среду в меньших количествах. Однако есть у дутьевых горелок и некоторые минусы. Основной их недостаток - высокая шумность работы.

Сами дутьевые газовые горелки, в свою очередь, можно также разделить на три подвида в зависимости от типа подачи воздуха. Речь может идти о принудительной подаче воздуха в сочетании:

  • с полным предварительным смешиванием;
  • с частичным предварительным смешиванием;
  • с отсутствием предварительного смешивания.

Для увеличения интенсивности получения газо-воздушной смеси используются разные технологии смешивания: газ может направляться в виде тоненьких струй, которые распределяются под определенным углом к воздушному потоку; газ может быть разделен на мелкие потоки, в которых и будет осуществляться смешивание: потоки воздуха и газа могут закручиваться под воздействием специального встроенного оборудования.

При искусственной подаче воздуха можно добиться увеличения интенсивности сжигания топливной смеси, что позволяет достигать максимальной мощности.

3. По теплотворности сжигаемого в горелках топлива

По данному признаку газовые горелки разделяются на три группы:

  • низкокалорийные модели. Используются при сжигании газа, теплота сгорания которого не превышает 8 МДж/м3. Это может быть доменный или генераторный газ;
  • среднекалорийные модели. Для этого вида горелок характерна теплота сгорания топлива в среднем 8-20 МДж/м3. Речь может идти о кокосовом газе;
  • высококалорийные модели. В данном случае минимальная теплота сгорания топлива будет составлять 20 МДж/м3. Высококалорийные горелки используются при сжигании попутных нефтяных и природных газов.

4. По локализации пламени

  • на огнеупорной поверхности;
  • в пористой, зернистой или перфорированной огнеупорной массе;
  • в свободном факеле;
  • в тоннеле или камере сгорания (огнеупорной).

Последние две разновидности применяются в котлах, предназначенных для нагревания теплоносителя (воздух, вода и так далее). Первые два вида используются при обогреве по методу инфракрасного излучения.

5. По избыточному давлению

Также выделяются три группы: горелки низкого давления (до пяти кПа), модели среднего давления (5-30 кПа) и модели высокого давления (больше 30 кПа). Наиболее востребованы сегодня модели среднего и низкого давления. Что касается устройств высокого давления, то область их использования на данный момент ограничивается сжиганием низкокалорийных газов.

Представленная выше классификация газовых горелок является максимально полной, благодаря чему даже неспециалисты смогут сориентироваться в разнообразии моделей горелок, представленных на современном рынке, и сделать правильный выбор.

Оцените свои требования, желания, возможности, выделите для себя наиболее значимые характеристики горелок, не забывая про предполагаемую область использования, нагрузку, и вы без труда сможете найти вариант, который вас устроит по всем характеристикам. Помните о том, что правильный выбор является залогом эффективной работы газовой горелки в течение длительного времени.

В литературе газовые горелки классифицируются по: а) теп­лоте сгорания газа; б) давлению газа в сети; в) назначению; г) ме­тоду сжигания газа; д) способу подвода воздуха; е) конструктив­ным особенностям и т. д.

Диффузионные горелки. У них весь необходимый воздух прите­кает к пламени из окружающей атмосферы. Эти горелки малочув­ствительны к колебанию давления газа, имеют большой диапазон регулирования, но требуют значительного объема топочной камеры

Я завершения процесса горения. Это объясняется малой ско­ростью перемешивания газа с воздухом, что приводит к увеличе­нию длины факела. Для газов с большой теплотой сгсрания, тре­бующих для полного сжигания больших количеств воздуха, такие горелки применяются редко.

2 А. с. Иссерлин

Инспекционные горелки. Образование газовоздушной смеси ча­стично или полностью происходит внутри самой горелки, поэтому они делятся на горелки частичного-и полного смешения. У горелок полного смешения горение завершается в минимальном объеме. В горелках частичного смешения только часть воздуха, необходи­мого для горения, поступает внутрь горелки в качестве первич­ного, а остальной воздух (вторичный) поступает к горелке извне. В этом случае процесс смешения затягивается и факел получается более длинным. Поступление воздуха и образование газовоздуш­ной смеси в инжекционных горелках происходит подсасыванием (эжектированием) воздуха за счет энергии струи газа.

Инжекционная горелка (рис. 3) состоит из четырех основных частей: газового сопла, смесителя, горелочного насадка и регуля­тора первичного воздуха.

Соплом называют калиброванное отверстие, через которое го­рючий газ подается в горелку. Оно выполняет две задачи: пропу­скает в горелку определенное количество газа и преобразовывает потенциальную энергию газа в кинетическую энергию газовой струи, причем скорость истечения газа из сопла получается до­вольно значительной. Так, перепад давления в сопле 150 мм вод. ст. создает скорость вытекающей струи порядка 50 м/сек.

Основным размером, характеризующим сопло, является его диаметр. Диаметр сопла должен строго соответствовать расчетным данным, так как от этого зависят производительность горелки и ее инжекционная способность. Сопло придает вытекающей струе определенную форму и направление.

Смеситель горелки служит для смешения газа с воздухом, т. е. получения однородной газовоздушной смеси, и выравнивания ско­рости по сечению горелки. Смесители в зависимости от типа го­релки выполняются либо в виде системы, состоящей из инжектора, цилиндрического горла и диффузора, либо в виде цилиндрической трубы.

Инжектор расширяющейся частью обращен к соплу. При исте­чении из сопла газа с большой скоростью в инжекторе создается разрежение, за счет которого происходит подсасывание воздуха из окружающей атмосферы. Воздух, поступающий в горелку, смеши­

Вается с газом, при этом скорость по сечению инжектора распреде­ляется весьма неравномерно.

Для выравнивания скорости потока газовоздушной смеси по сечению служит средняя цилиндрическая часть смесителя - горло. Оно является самой узкой его частью. Диаметр горла - суще­ственный фактор для инжекционных горелок. От величины отноше­ния диаметра горла к диаметру сопла зависит коэффициент ин- жекции горелки, т. е. количество воздуха, засасываемого через смеситель. Если, например, коэффициент эжекции А равен 8,0, то это значит, что на каждый кубометр газа горелка эжектирует

8,0 м3 воздуха. Следовательно, коэффициент избытка воздуха опре­делится как отношение коэффициента эжекции к количеству воз­духа, теоретически необходимому для горения, т. е.

Диффузор служит для преобразования части скоростного на­пора потока в статический, необходимый для преодоления после­дующего сопротивления горелки. В диффузоре заканчивается сме­шение газа с воздухом, и на выходе из него наблюдается полное выравнивание концентраций по сечению.

Насадок горелки предназначен для выдачи газовоздушной смеси и может иметь различную форму. Он часто конструктивно совмещается со стабилизатором (например, в пластинчатом или кольцевом стабилизаторе). Иногда горелка крепится насадком к газовому прибору или топочной камере.

Регулятор первичного воздуха служит для регулирования коли­чества воздуха, поступающего в горелку. Наиболее часто он вы­полняется в виде воздушно-регулировочной шайбы или заслонки. Иногда он конструктивно совмещается с устройством для глуше­ния шума (например, у инжекционных горелок среднего давле­ния с пластинчатыми стабилизаторами конструкции Мосгазпро - екта).

Инжекционные горелки полного смешения рассчитываются обычно на работу с коэффициентом избытка воздуха 1,05-1,15. В инжекционных горелках частичного смешения коэффициент из­бытка первичного воздуха находится в пределах 0,3-0,6.

В инжекционных горелках полного смешения можно сжигать всю газовоздушную смесь на огнеупорных поверхностях, которые, накаляясь, дают концентрированное тепловое излучение. Эта раз­новидность инжекционных горелок называется горелками инфра­красного излучения.

Горелки с принудительной подачей воздуха. Весь необходимый Для горения воздух нагнетается вентилятором. Эти горелки часто называют также двухпроводными. На рис. 4 показаны схемы наи­более распространенных горелок с принудительной подачей воз­духа. Горелка на рис. 4,а имеет периферийную подачу газа, т. е. газ подается в виде струй в поперечный воздушный поток. В го­
релке на рис. 4, Б осуществляется центральная подача газа в поток воздуха.

В горелках с принудительной подачей воздуха для лучшего смешения газа с воздухом используются различные конструктив­ные приемы. Например, можно закручивать воздушный поток в специальных устройствах, разбивать поток газа на мелкие струи или подавать газ под углом к воздушному потоку.

В зависимости от конструкции горелки весь воздух может пода­ваться в качестве первичного либо часть его как первичный, часть - как вторичный.

Рис, 4. Принципиальная схема горелки с принудительной подачей воздуха. а - периферийная; б - центральная подача газа.

Комбинированные горелки. В них возможно поочередное сжига­ние нескольких видов топлива. Существуют горелки, рассчитанные на сжигание трех видов топлива. Некоторые конструкции комбини­рованных горелок допускают одновременное сжигание двух видов топлива. Более широкое распространение получили пылегазовые и газомазутные горелки.

Из-за отсутствия нормативных данных на газовые горелки при­ходится оценивать их качество по определенным требованиям, ко­торые сводятся к следующему:

1) горелки должны обеспечивать полное сжигание газа при минимальном избытке воздуха;

2) горелки должны работать устойчиво (без отрыва и проскока пламени) в необходимом диапазоне изменения тепловых нагрузок;

3) конструкция и компоновка горелки должны полностью пре­дохранять ее детали от перегрева и обгорания;

4) потери напора в горелке по воздушному и газовому (для низкого давления) трактам должны быть минимальными;

5) при работе горелки на двух видах топлива оба топлива при раздельном их сжигании должны использоваться с максимальной
эффективностью, а переход с одного топлива на другое осуществ­ляться в короткий срок;

6) горелки должны быть просты в изготовлении, надежны и безопасны в эксплуатации, удобны для ремонта и осмотра.

КОНСТРУКЦИИ ТОПОК С НЕПОДВИЖНЫМИ РЕШЕТКАМИ

9.1 Классификация слоевых топок

Слоевые топки предназначены для сжигания твердого кускового топлива. Широкое распространение для котлов малой и средней мощности нашли топки с плотным слоем.

Преимущества:

– пригодны для различных сортов топлив, просты в эксплуатации;

– могут работать со значительными колебаниями тепловой нагрузки;

– относительно небольшой расход энергии на собственные нужды;

– не требуют дорогостоящих пылеприготовительных устройств;

– не требуют больших объемов топки.

Недостатки:

– ограниченная производительность котла вследствие значительного времени сгорания крупных частиц топлива.

Обслуживание топки, в которой топливо сжигается в слое, включает следующие операции:

– подачу топлива в топку;

– перемещение кусочков топлива относительно друг друга и колосниковой решетки (шурование слоя);

– удаление из топки шлака.

В зависимости от степени механизации указанных операций топочные устройства можно разделить на:

– немеханизированные (все три операции выполняются вручную);

– полумеханические (механизированы одна или две операции);

– механические (механизированы все три операции).

По режиму подачи топлива в плотный слой различают топочные устройства с периодической и непрерывной загрузкой топлива. Характер подачи топлива в топку оказывает решающее влияние на показатели работы топочного устройства.

По организации тепловой подготовки и воспламенения топлива в слое различают топки с нижним , верхним и смешанным воспламенением .

По способу смесеобразования топлива и воздуха в слое различают следующие схемы, отличающиеся друг от друга сочетанием направлений газовоздушного и топливно – шлакового потоков:

– встречные;

– параллельные;

– поперечные;

– смешанные.

Эффективность и производительность слоевых топочных устройств зависят от рациональной организации тепловой подготовки топлива, его зажигания и горения.

9.2 Характеристика процессов горения твердого топлива в плотном слое

В верхней части слоя после загрузки находится свежее топливо . Под ним располагается горящий кокс , а непосредственно под решеткой – шлак . Указанные зоны слоя частично перекрывают друг друга. По мере выгорания топливо постепенно проходит все зоны. В первый период после поступления свежего топлива на горящий кокс происходит его тепловая подготовка, на что затрачивается часть выделяющейся в слое теплоты.

Образующийся при горении топлива шлак капельками стекает с раскаленных кусочков кокса навстречу воздуху. Постепенно шлак охлаждается и уже в твердом состоянии достигает колосниковой решетки, откуда он удаляется. Шлак, лежащий на решетке, защищает ее от перегрева, подогревает и равномерно распределяет воздух по слою.

Воздух, проходящий через решетку и поступающий в слой топлива, называется первичным . Если первичного воздуха для полного горения топлива не хватает и над слоем имеются продукты неполного горения, то дополнительно подают воздух в надслойное пространство. Такой воздух называют вторичным .

Первичные химические реакции между топливом и окислителем происходит в зоне раскаленного кокса.

В начале слоя, в кислородной зоне (к), в которой происходит интенсивное расходование кислорода, одновременно образуется оксид и диоксид углерода СО 2 и СО. К концу кислородной зоны концентрация О 2 снижается до 1 – 2%, а концентрация СО 2 достигает своего максимума. Температура слоя в кислородной зоне резко возрастает, имея максимум там, где устанавливается наибольшая концентрация СО 2 .

В восстановительной зоне (В) кислород практически отсутствует. Диоксид углерода взаимодействует с раскаленным углеродом с образованием оксида углерода.