Признак перпендикулярной прямой и плоскости. Визуальный гид (2019)

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .

Закрепим понятие перпендикулярности прямой и плоскости конспектом урока. Предоставим общее определение, сформулируем и приведём доказательства теоремы и решим несколько задач на закрепление материала.

Из курса геометрии известно: две прямые считаются перпендикулярными, когда они пересекаются под углом 90 о.

Вконтакте

Одноклассники

Теоретическая часть

Переходя к исследованию характеристик пространственных фигур, будем применять новое понятие.

Определение:

прямая будет называться перпендикулярной плоскости, когда она перпендикулярна прямой на поверхности, произвольно проходящей через точку пересечения.

Иначе говоря, если отрезок «АВ» перпендикулярен плоскости α, тогда угол пересечения со всяким отрезком, проведённым по данной поверхности через «С» точку прохождения «АВ» через плоскость α, будет 90 о.

Из вышесказанного вытекает теорема о признаке перпендикулярности прямой и плоскости:

в случае если прямая, проведённая через плоскость, будет перпендикулярна двум прямым, проведённым на плоскости через точку пересечения, то она перпендикулярна целой плоскости.

Говоря другими словами, если на рисунке 1 углы ACD и ACE равны 90 о, то и угол ACF тоже будет 90 о. Смотреть рисунок 3.

Доказательство

По условиям теоремы линия «а» проведена перпендикулярно линиям d и e. Иначе говоря, углы ACD и ACE равны 90 о. Приводить доказательства будем, исходя из свойств равенства треугольников. Смотреть рисунок 3.

Через точку C прохождения линии a через плоскость α прочертим линию f в произвольном направлении. Приведём доказательства, что она будет перпендикулярна отрезку AB или угол ACF будет 90 о.

На прямой a отложим отрезки одинаковой длины AC и AB. На поверхности α проведём линию x в произвольном направлении и не проходящую через место пересечения в точке «С». Линия «х» должна пересекать линии e, d и f.

Соединим прямыми точки F, D и E c точками A и B.

Рассмотрим два треугольника ACE и BCE. По условиям построения:

  1. Имеются две одинаковые стороны AC и BC.
  2. У них дна общая сторона CE.
  3. Два равных угла ACE и BCE — по 90 о.

Следовательно, по условиям равенства треугольников, если имеем две равные стороны и одинаковый угол между ними, то эти треугольники равны. Из равенства треугольников следует, что стороны AE и BE равны.

Соответственно доказывается равенство треугольников ACD и BCD, иначе говоря, равенство сторон AD и BD.

Теперь рассмотрим два треугольника AED и BED. Из ранее доказанного равенства треугольников следует, что у этих фигур есть одинаковые стороны AE с BE и AD с BD. Одна сторона ED общая. Из условия равенства треугольников, определённых по трём сторонам, следует, что углы ADE и BDE равны.

Сумма углов ADE и ADF составляет 180 о. Сумма углов BDE и BDF также будет 180 о. Так как углы ADE и BDE равны, то и углы ADF и BDF равны.

Рассмотрим два треугольника ADF и BDF. Они имеют по две равных стороны AD и BD (доказано ранее), DF общую сторону и по равному углу между ними ADF и BDF. Следовательно, эти треугольники имеют одинаковые по длине стороны. То есть сторона BF имеет ту же длину, что и сторона AF.

Если рассматривать треугольник AFB, то он будет равнобедренный (AF равняется BF), а прямая FC является медианой, так как по условиям построения сторона AC равняется стороне BC. Следовательно, угол ACF равняется 90 о. Что и следовало доказать.

Важным следствием из приведённой теоремы будет утверждение:

если две параллельные пересекают плоскость и одна из них составляет угол 90 о, то и вторая походит через плоскость под углом 90 о.

По условиям задачи a и b являются параллельными. Смотреть рисунок 4. Линия a перпендикулярна поверхности α. Отсюда следует, что линия b будет также перпендикулярна поверхности α.

Для доказательства через две точки пересечения параллельных прямых с плоскостью проведём на поверхности прямую c . По теореме о прямой, перпендикулярной плоскости, угол DAB будет 90 о. Из свойств параллельных прямых следует, что угол ABF тоже будет 90 о. Следовательно, по определению прямая b будет перпендикулярна поверхности α.

Использование теоремы для решения задач

Для закрепления материала, используя основополагающие условия перпендикулярности прямой и плоскости, решим несколько задач.

Задача № 1

Условия. Из точки A построить перпендикулярную линию плоскости α. Смотреть рисунок 5.

На поверхности α проведём произвольную прямую b. Через прямую b и точку A построим поверхность β. Из точки A на линию b проведём отрезок AB. Из точки B на поверхности α проведём перпендикулярную линию c .

Из точки A на линию с опустим перпендикуляр AC. Докажем, что эта линия будет перпендикулярна плоскости.

Для доказательства через точку C на поверхности α проведём линиюd, параллельную b, и через линию c и точку A построим плоскость. Линия AC перпендикулярна линии c по условию построения и перпендикулярна линии d, как следствие о двух параллельных линиях из теоремы о перпендикулярности, так как по условию линияb перпендикулярна поверхности γ.

Следовательно, по определению перпендикулярности линии и плоскости, построенный отрезок AC перпендикулярен поверхности α.

Задача № 2

Условия. Отрезок АВ перпендикулярен плоскости α. Треугольник BDF расположен на поверхности α и имеет следующие параметры:

  • угол DBF будет 90 о
  • сторона BD =12 см;
  • сторона BF =16 см;
  • BC - медиана.

Смотреть рисунок 6.

Найти длину отрезка АС, если АВ = 24 см.

Решение. По теореме Пифагора, гипотенуза или сторона DF равна квадратному корню из суммы квадратов катетов. Длина BD в квадрате равна 144 и, соответственно, BC в квадрате будет 256. В сумме 400; извлекая квадратный корень, получаем 20.

Медиана BC в прямоугольном треугольнике делит гипотенузу на две равные части и по длине равна этим отрезкам, то есть ВС = DC = CF = 10.

Снова используется теорема Пифагора, и получаем: гипотенуза C = 26, что является квадратным корнем из 675, суммы квадратов катетов 576 (АВ = 24 в квадрате) и 100 (ВС = 10 в квадрате).

Ответ: Длина отрезка АС равняется 26 см.