Альфа бета и гамма частицы определение. Альфа-, бета- и гамма-излучения — Гипермаркет знаний

Следующая страница>>

§ 1. Ионизирующие излучения, их определение и свойства. Радиоактивность.

Альфа-лучи. Бета-лучи. Гамма-лучи. Рентгеновские лучи.

Радиоактивность - самопроизвольное превращение ядер одних атомов в ядра других атомов, сопровождающееся испусканием ионизирующих излучений.

Радиоактивное излучение называют ионизирующим, так как при взаимодействии с веществом оно способно прямо или косвенно создавать в нем заряженные атомы и молекулы (ионы). К ионизирующим излучениям относятся рентгеновские лучи, радио- и гамма-лучи, альфа-лучи, бета-лучи, потоки нейтронов и других ядерных частиц, космические лучи.

Альфа-лучи представляют собой поток α-частиц положительно заряженных ядер атомов гелия и характеризуются большой ионизирующей и малой проникающей способностями. Вследствие этих свойств α-частицы не проникают через внешний слой кожи. Вредное воздействие на организм человека проявляется при нахождении его в зоне действия вещества, излучающего α-частицы.

Бета-лучи представляют собой поток электронов или позитронов, излучаемых ядрами атомов радиоактивных веществ. По сравнению с α-частицами они обладают большей проникающей способностью и поэтому одинаково опасны как при непосредственном прикосновении к излучающему веществу, так и на расстоянии.

Гамма-лучи характеризуются наименьшей ионизирующей и наибольшей проникающей способностью. Это высокочастотное электро-магнитное излучение, возникающее в процессе ядерных реакций или радиоактивного распада.

Рентгеновские лучи, возникающие при бомбардировке вещества потоком электронов, являются также электромагнитным излучением. Они могут возникнуть в любых электровакуумных установках, обладают малой ионизирующей способностью и большой глубиной проникновения.

Для количественной оценки действия, производимого любыми ионизирующими излучениями в среде, пользуются понятием поглощенная доза излучения Д п =W/m,

где W - энергия ионизирующего излучения, поглощенная облученным веществом, Дж; m - масса облученного вещества, кг. Внесистемной единицей поглощенной дозы является рад. 1 рад соответствует поглощению энергии 0,01 Дж веществом массой 1 кг.

Количественной характеристикой рентгеновского и гамма-излучений является экспозиционная доза (Кл/кг): Д э = Q/m,

где Q - суммарный электрический заряд ионов одного знака, Кл; m - масса воздуха, кг.

За единицу экспозиционной дозы рентгеновского и гамма-излучений принимают кулон на килограмм (Кл/кг). Кулон на килограмм - экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия на 1 кг сухого атмосферного воздуха создает в воздухе ионы, несущие заряд 1 Кл электричества каждого знака.

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучений является рентген. Рентген -это такая доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия в 1,293*10 -6 г сухого воздуха при нормальных условиях (при температуре 0° С и давлении 760 мм рт. ст.) образует ионы, несущие 1 ед. заряда СГС каждого знака; 1 рентген (Р) = 10 3 миллирентген (мР) = 10 6 микрорентген (мкР).

Экспозиционная и поглощенная дозы, отнесенные ко времени, определяются как мощности доз и измеряются соответственно рентген в секунду (Р/с) и рад в секунду (рад/с).

Воздействие различных радиоактивных излучений на живые ткани зависит от проникающей и ионизирующей способности излучения. Разные виды излучений при одинаковых значениях поглощенной дозы вызывают различный биологический эффект. Поэтому для оценки радиационной опасности введено понятие эквивалентной дозы Д экв, единицей которой является бэр (биологический эквивалент рада) *

Д экв =Д и /k,

* 1 бэр - эквивалентная доза любого ионизирующего излучения в биологической ткани, которая создает такой же биологический эффект, что и доза в 1 рад рентгеновского или гамма-излучения,

где k - качественный коэффициент, показывающий отношение биологической эффективности данного вида излучений к биологической эффективности рентгеновского излучения, принятого за единицу.

Не нужно пугаться этого слова: оно обозначает попросту радиоактивные изотопы. Иногда в речи можно услышать слова «радионуклеид», или еще менее литературный вариант - «радионуклеотид». Правильный термин - именно радионуклид. Но что такое радиоактивный распад? Каковы свойства разных видов излучения и чем они отличаются? Обо всем - по порядку.

Определения в радиологии

С тех времен, когда произошел взрыв первой атомной бомбы, многие понятия из радиологии претерпели изменения. Вместо фразы «атомный котел» принято говорить «атомный реактор». Вместо словосочетания «радиоактивные лучи» пользуются выражением «ионизирующие излучения». Словосочетание «радиоактивный изотоп» заменено на «радионуклид».

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое Ядра радионуклидов не являются стабильными - этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности - некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида - беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения - кюри (Ки): 1 кюри = 37 млрд беккерелей.

Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

Какие радионуклиды представляют собой большую опасность?

Свойства гамма-лучей

Этот вид излучения имеет ту же природу, что и ультрафиолетовое излучение, инфракрасные лучи или радиоволны. Гамма-лучи представляют собой фотонное излучение. Однако с чрезвычайно высокой скоростью фотонов. Этот тип излучения очень быстро проникает сквозь материалы. Чтобы задержать его, обычно используют свинец и бетон. Гамма-лучи способны преодолевать тысячи километров.

Миф об опасности

Сравнивая альфа-, гамма- и бета-излучение, люди обычно считают гамма-лучи наиболее опасными. Ведь они образуются при ядерных взрывах, преодолевают сотни километров и вызывают лучевую болезнь. Все это верно, однако не имеет непосредственного отношения к опасности лучей. Так как в этом случае говорят именно об их проникающей способности. Конечно, альфа-, бета- и гамма-лучи различаются в этом отношении. Однако опасность оценивается не проникающей способностью, а поглощенной дозой. Этот показатель высчитывается в джоулях на килограмм (Дж/кг).

Таким образом, измеряется дробью. В ее числителе находится не количество альфа-, гамма- и бета-частиц, а именно энергия. К может быть жестким и мягким. Последнее обладает меньшей энергией. Продолжая аналогию с оружием, можно сказать: значение имеет не только калибр пули, важно и то, из чего производится выстрел - из рогатки или из дробовика.

Корпускулярные излучения - ионизирующие излучения, состоящие из частиц с массой, отличной от нуля.


Альфа-излучение - поток положительно заряженных частиц (ядер атомов гелия - 24Не), который движется со скоростью около 20000 км/с. Альфа-лучи образуются при радиоактивном распаде ядер элементов с большими порядковыми номерами и при ядерных реакциях, превращениях. Энергия их колеблется в пределах 4-9 (2-11) МэВ. Пробег a-частиц в веществе зависит от их энергии и от природы вещества, в котором они движутся. В среднем в воздухе пробег составляет 2-10 см, в биологической ткани - несколько микрон. Так как a-частицы массивны и обладают относительно большой энергией, путь их в веществе прямолинейный , они вызывают сильно выраженный эффект ионизации. Удельная ионизация составляет примерно 40000 пар ионов на 1 см пробега в воздухе (на всей длине пробега может создаваться до 250 тысяч пар ионов). В биологической ткани на пути в 1-2 микрона также создается до 40000 пар ионов. Вся энергия передается клеткам организма, нанося ему огромный вред.


Альфа-частицы задерживаются листом бумаги и практически не могут проникать через внешний (наружный) слой кожи, они поглощаются роговым слоем кожи. Поэтому a-излучение не представляет опасности до той поры, пока радиоактивные вещества, излучающие a-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом - тогда они становятся чрезвычайно опасными .


Бета-излучение - поток b-частиц, состоящий из электронов (отрицательно заряженных частиц) и позитронов (положительно заряженных частиц), испускаемых атомными ядрами при их b-распаде. Масса β-частиц в абсолютном выражении равна 9,1х10-28 г. Бета-частицы несут один элементарный электрический заряд и распространяются в среде со скоростью от 100 тыс. км/с до 300 тыс. км/с (т.е. до скорости света) в зависимости от энергии излучения. Энергия b-частиц колеблется в значительных пределах. Это объясняется тем, что при каждом b-распаде радиоактивных ядер образующаяся энергия распределяется между дочерним ядром, b-частицами и нейтрино в разных соотношениях, причем энергия b -частиц может колебаться от нуля до какого-то максимального значения. Максимальная энергия лежит в пределах от 0,015-0,05 МэВ (мягкое излучение) до 3-13,5 МэВ (жесткое излучение).


Так как b-частицы имеют заряд, то под действием электрического и магнитного полей они отклоняются от прямолинейного направления. Обладая очень малой массой, b-частицы при столкновении с атомами и молекулами также легко отклоняются от своего первоначального направления (т.е. происходит сильное рассеяние их). Поэтому определить длину пути бета-частиц очень трудно - этот путь слишком извилистый. Пробег
b-частиц в связи с тем, что они обладают различным запасом энергии также подвергается колебаниям. Длина пробега в воздухе может достигать
25 см, а иногда и нескольких метров. В биологических тканях пробег частиц составляет до 1 см. На путь пробега влияет также плотность среды.


Ионизирующая способность бета-частиц значительно ниже, чем альфа-частиц. Степень ионизации зависит от скорости: меньше скорость - больше ионизация. На 1 см пути пробега в воздухе b-частица образует
50-100 пар ионов (1000-25 тыс. пар ионов на всем пути в воздухе). Бета-частицы больших энергий, пролетая мимо ядра слишком быстро, не успевают вызвать такой же сильный ионизирующий эффект, как медленные бета-частицы. При потере энергии захватывается либо положительным ионом с образованием нейтрального атома, либо атомом с образованием отрицательного иона.


Нейтронное излучение - излучение, состоящее из нейтронов, т.е. нейтральных частиц. Нейтроны образуются при ядерных реакциях (цепной реакции деления ядер тяжелых радиоактивных элементов, при реакциях синтеза более тяжелых элементов из ядер водорода). Нейтронное излучение является косвенно ионизируемым; образование ионов происходит не под действием самих нейтронов, а под действием вторичных тяжелых заряженных частиц и гамма-квантов, которым нейтроны передают свою энергию. Нейтронное излучение чрезвычайно опасно вследствие своей высокой проникающей способности (пробег в воздухе может достигать несколько тысяч метров). Кроме того нейтроны могут вызвать наведенную (в том числе и в живых организмах), превращая атомы стабильных элементов в их радиоактивные . От нейтронного облучения хорошо защищают водородсодержащие материалы (графит, парафин, вода и т.д.).


В зависимости от энергии различают следующие нейтроны:


1. Сверхбыстрые нейтроны с энергией в 10-50 МэВ. Они образуются при ядерных взрывах и работе ядерных реакторов.


2. Быстрые нейтроны, энергия их превышает 100 кэВ.


3. Промежуточные нейтроны - энергия их от 100 кэВ до 1 кэВ.


4. Медленные и тепловые нейтроны. Энергия медленных нейтронов не превышает 1 кэВ. Энергия тепловых нейтронов достигает 0,025 эВ.


Нейтронное излучение используют для нейтронной терапии в медицине, определения содержания отдельных элементов и их изотопов в биологических средах и т.д. В медицинской радиологии используются главным образом быстрые и тепловые нейтроны, в основном используют калифорний-252, распадающийся с выбросом нейтронов со средней энергией в 2,3 МэВ.


Электромагнитные излучения различаются по своему происхождению, энергии, а также по длине волны. К электромагнитным излучениям относятся рентгеновское излучение, гамма-излучение радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество сильно ускоренных заряженных частиц. Видимый свет и радиоволны - тоже электромагнитные излучения, но они не ионизируют вещество, ибо характеризуются большой длинной волны (меньшей жесткостью). Энергия электромагнитного поля излучается не непрерывно, а отдельными порциями - квантами (фотонами). Поэтому электромагнитные излучения - это поток квантов или фотонов.


Рентгеновские излучения. Рентгеновские лучи были открыты Вильгельмом Конрадом Рентгеном в 1895 г. Рентгеновское излучение - это квантовое электромагнитное излучение с длинной волны 0,001-10 нм. Излучение с длинной волны, превышающей 0,2 нм условно называют «мягким» рентгеновским излучением, а до 0,2 нм - «жестким». Длина волны - расстояние, на которое излучение распространяется за один период колебания. Рентгеновское излучение, как и всякое электромагнитное излучение, распространяется со скоростью света - 300000 км/с. Энергия рентгеновского излучения обычно не превышает 500 кэВ.


Различают тормозное и характеристическое рентгеновское излучение. Тормозное излучение возникает при торможении быстрых электронов в электростатическом поле ядра атомов (т.е. при взаимодействие электронов с ядрами атомов). При прохождении электрона больших энергий вблизи ядра наблюдается рассеяние (торможение) электрона. Скорость электрона снижается, и часть его энергии испускается в виде фотона тормозного рентгеновского излучения.


Характеристические рентгеновские излучения возникают, когда быстрые электроны проникают вглубь атома и выбивают из внутренних уровней (К, L и даже М). Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних уровней заполняют освободившиеся места во внутренних уровнях и при этом излучаются фотоны характеристического излучения с энергией, равной разности энергии атома в возбужденном и основном состоянии (не превышающем 250 кэВ). Т.е. характеристическое излучение возникает при перестроении электронных оболочек атомов. При различных переходах атомов из возбужденного состояния в невозбужденное, избыток энергии может также испускаться в виде видимого света, инфракрасных и ультрафиолетовых лучей. Так как рентгеновские лучи обладают малой длиной волн и меньше поглощаются в веществе, то они обладают большей проникающей способностью.


Гамма-излучение - это излучение ядерного происхождения. Оно испускается ядрами атомов при альфа и бета распаде природных искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета-частицей). Этот избыток энергии мгновенно высвечивается в виде гамма-квантов. Т.е. гамма-излучения - это поток электромагнитных волн (квантов), который излучается в процессе радиоактивного распада при изменении энергетического состояния ядер. Кроме того, гамма-кванты образуются при антигиляции позитрона и электрона. По свойствам гамма-излучение близко к рентгеновскому излучению, но обладает большей скоростью и энергией. Скорость распространения в вакууме равняется скорости света - 300000 км/с. Так как гамма-лучи не имеют заряда, то в электрическом и магнитном полях не отклоняются, распространяясь прямолинейно и равномерно во все стороны от источника. Энергия гамма-излучения колеблется от десятков тысяч до миллионов электрон-вольт (2-3 МэВ), редко достигает 5-6 МэВ (так средняя энергия гамма-лучей, образующихся при распаде кобальта-60 равна 1,25 МэВ). В состав потока гамма-излучений входят кванты различных энергий. При распаде 131

Ни для кого не секрет, что радиация вредна. Это знают все. Все слышали про ужасные жертвы и опасность радиоактивного воздействия. Что же такое радиация? Как она возникает? Существуют ли разные виды радиации? И как от нее защититься?

Слово «радиация» происходит от латинского radius и обозначает луч. В принципе радиация - это все виды существующих в природе излучений - радиоволны, видимый свет, ультрафиолет и так далее. Но излучения бывают различными, некоторые из них полезны, некоторые вредны. Мы в обычной жизни привыкли словом радиация называть вредное излучение, возникающее вследствие радиоактивности некоторых видов вещества. Разберем, как на уроках физики объясняют явление радиоактивности.

Радиоактивность в физике

Мы знаем, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Так вот ядро - это в принципе очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, различно и их действие на человека и меры защиты от него. Разберем все по порядку.

Альфа-излучение

Альфа-излучение — это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одно - избегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться.

Достаточно большой перечень вопросов породило необычайное открытие радиоактивности. Величайший прорыв в данной сфере сделал ученый Э. Резерфорд, который поместил в магнитное поле особый излучатель, а именно — радиоактивный. В итоге пучок распался на три составляющие.

Особенности излучения

На основе серии опытов, стало известно, что альфа-излучение – это поток положительных частиц, а их параметры абсолютно идентичны тем, которые имеются у ядер гелия. Что касается атома гелия, то у него только 2 электрона.

Помимо альфа-лучей, обнаружены гамма и бета, каждый из них обладает особой силой, имеет радиоактивность. Таким образом, можно смело утверждать, что излучение альфа – это дважды ионизированный атом гелия. Альфа является положительно заряженным, гамма – нейтральным, а что касается бета, то он является отрицательным лучом. Альфа, гамма, а также бета имеют сильные отличия, касающиеся способности проникающей. Простыми словами, гамма, альфа, бета отличны тем, что они поглощаются разными компонентами с различной интенсивностью.

Гамма – это лучи, напоминающие излучение рентгена, но их проникающая способность гораздо выше. Это приводило к мысли, что гамма лучи являются электромагнитными волнами. Однако сомнения отошли в сторону, когда обнаружили дифракцию гамма лучей на особых кристаллах также была определена их длина. Как ни странно, длина вол гамма лучей очень маленькая, а именно – до 10-11 сантиметров.

Что касается бета-лучей, то их рассматривали в качестве заряженной частицы. С бета было намного легче проводить эксперименты. Цель проведенных исследований – определит массу, заряд бета-лучей. Было установлено, что бета-частицы являются электронами, скорость движения которых приближена к скорости света.

Альфа-излучения имеют источники:

  • реакторы;
  • объекты промышленности урановой;
  • распад весьма тяжелых химических элементов, в результате чего наблюдается проявление ядер гелия;
  • эксперименты, которые осуществляются на ускорителях частиц, лабораториях радиоизотопных;
  • ускорение гелия.

Каждый из указанных лучей имеет собственный спектр излучения. Простыми словами, спектр – это распределение частиц согласно величинам измеряемым, которое приведено к определенным условиям. Спектр различают по виду частиц. Что касается альфа-спектра, то его принято считать дискретным.

Методы защиты

Альфа-излучения имеют свой спектр, а также определенную радиоактивность, которые способны оказывать пагубное воздействие на человека. Поражающая радиоактивность потока альфа-частиц не слишком велика.

Принято считать, что спектр подобного излучения неопасен, но не стоит забывать про радиоактивность. Проникновение массивных частиц в организм человека вместе с водой, едой или же сквозь кожный покров, имеется риск серьезного отравления. Осложнение возникает по причине мощного ионизирующего воздействия, формирования кислорода, окислителя, водорода свободного. За счет того, радиоактивность оказывает воздействие на мозг, скапливаясь в нем, наблюдается появления множества патологий, которые активно снижают адаптационные, защитные функции организма.

Не смотря не радиоактивность, альфа-частицы признаны наиболее безопасными, так как после внешнего облучения не требуются защитные средства. Опасность поджидает от внутреннего облучения, когда радиоактивность частиц действует более хитро. Для предотвращения неприятностей, достаточно не допустить попадание в организм радионуклидов, используя индивидуальную защиту:

  • одежда, сделанная из специального материала;
  • если кожа чувствительная, можно пользоваться кремом, дерматологической пастой;
  • для глаз подойдут щитки из специального оргстекла.

В перечень рекомендаций входит информация о воздействии пищевых продуктов на выведение, нейтрализацию радионуклидов в организме. Такая способность имеется у продуктов, которые богаты витамином С, В. Отлично помогают перепелиные яйца, но если доза облучения не слишком большая. Они считаются богатым источником аминокислот, витаминов и микроэлементов. Из растений, которые способны помочь, можно выделить топинамбур.

Сфера применения излучения

Кроме защиты от альфа-частиц, была разработана особая терапия с их использованием. Лечебный сеанс позволяет пользоваться изотопами, которые были получены при излучении, а именно – торон, радон, которые обладают небольшими сроками жизни, быстро ликвидируются из организма.

Примеры применения альфа-излучения в медицине:

  • пероральное применение воды радоновой;
  • прием ванны радоновой;
  • дыхательная процедура воздухом с радонами.

Доктора абсолютно и твердо уверены, что влияние альфа-частиц можно фокусировать, уничтожая раковые клетки. Подобная целебная терапия способна оказать седативное, обезболивающее, противовоспалительное влияние на человека. Рекомендовано к лечению опорно-двигательного аппарата, сердечно-сосудистых и гинекологических недугов. Процедура проводится строго под контролем лечащего врача и специально обученного человека.