Химические элементы и их характеристика. Атомы

Одни из самых популярных химических вопросов: "Сколько сейчас известно химических элементов?", "Сколько существует химических элементов?", "Кто их открыл?"
Эти вопросы не имеют простого и однозначного ответа.
Что значит "известно"? Встречаются в природе? На земле, в воде, в космосе? Получены и изучены их свойства? Свойства чего? Вещества в виде фаз или только на атомно-молекулярном уровне? Имеющиеся современные технологии позволяют обнаруживать и несколько атомов... Но, по отдельному атому свойства вещества не определить.
А что значит "существуют"? В практическом плане это понятно: наличествуют в природе в таком количестве и столько времени, чтобы они и их соединения могли оказывать реальное влияние на природные явления. Или хотя бы можно было изучить их свойства в лаборатории.
Таковых химических элементов в природе выявлено около 88. Почему около? Потому, что среди элементов с порядковым номером менее 92 (до урана) в природе отсутствуют технеций (43) и франций (87). Практически нет астата (85). Нет прометия (61).
С другой стороны, и нептуний (93) и плутоний (94) (нестабильные трансурановые элементы) обнаруживаются в природе там, где встречаются урановые руды.
Все элементы следующие после плутония Pu в периодической системе Д.И.Менделеева в земной коре практически отсутствуют, хотя некоторые из них несомненно образуются в космосе во время взрывов сверхновых звёзд. Но долго они не живут...
Любопытно открытие франция - элемента № 87. Этот элемент "придумал" Д.И.Менделеев, который, на основе созданной им периодической таблицы, предположил, что в группе щелочных металлов не хватает наиболее тяжёлого названного им экацезием.
Сейчас известно, что франция в земной коре присутствует не более 30 грамм. Это радиоактивный элемент и самый долгоживущий его изотоп франций-210 имеет период полураспада 19,3 минуты.
Франций можно считать последним элементом открытым на Земле как содержащимся в природе (Маргарет Пере, ученица Марии Склодовской-Кюри, в 1929 году; официально признан и получил название в 1938 году).
Все последующие элементы были получены через радиоактивный распад химических элементов и с применением ускорителей заряженных частиц.
К настоящему времени ученые синтезировали 26 трансурановых элементов, начиная с нептуния (N=93) и заканчивая элементом с номером N=118 (номер элемента соответствует числу протонов в ядре атома и числу электронов вокруг ядра атома).
Трансурановые химические элементы от 93 до 100 получают в ядерных реакторах, а остальные - в результате ядерных реакций на ускорителях частиц. Технология получения трансурановых элементов на ускорителях принципиально понятна: разгоняют подходящие положительно заряженные остовы ядрер элементов электрическим полем до нужных скоростей и сталкивают их с мишенью, содержащей другие более тяжёлые элементы - происходят процессы слияния и распада атомных ядер различных элементов. Продукты этих процессов анализируют и делают выводы об образовании новых элементов.
Немецкие ученые из Центра по изучению тяжелых ионов Гельмгольца в серии экспериментов 2013-2014 годов планировали получить следующий, 119 элемент таблицы Менделеева, но потерпели неудачу. Они обстреливали ядра берклия (N=97) ядрами титана (N=22), однако анализ данных эксперимента не подтвердил наличия нового элемента.
В настоящее время можно считать идентифицированным существование ста восемнадцати химических элементов. Сообщения об обнаружении 119-го - первого элемента 8 периода - можно пока считать вероятно достоверными.
Были заявления о синтезе элемента унбиквадий (124) и косвенные свидетельства об элементах унбинилий (120) и унбигексий (126), - но эти результаты ещё находятся в стадии подтверждения.
Сейчас, наконец, все, из официально известных и доказанных на сегодня 118 элементов, имеют утвержденные ИЮПАК общепризнанные названия. Не так давно самым тяжёлым из элементов, имеющих официально признанное название, был 116-й элемент, получивший его в мае 2012 года - ливерморий. Тогда же было официально утверждено название 114-го элемента - флеровий.
Сколько химических элементов вообще можно получить? Теоретически предсказывается возможность синтеза элементов с номерами 121-126. Это числа протонов в ядрах элементов. Проблема нижней границы таблицы Менделеева остаётся одной из важнейших в современной теоретической химии.
У каждого химического элемента имеется несколько изотопов. Изотопы - это атомы в ядрах которых имеется одинаковое число протонов, но разное количество нейтронов. Мир атомных ядер химических элементов очень разнообразен. Сейчас известно около 3500 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём. Вопрос очень интересный - сколько у данного элемента может быть изотопов?
Известно 264 ядра атомов, которые стабильны, то есть не испытывают со временем никаких быстрых самопроизвольных превращений. Распадов.
Остальные ядра в количестве 3236 подвержены различным видам радиоактивного распада: альфа-распаду (испускание альфа-частиц - ядер атома гелия); бета-распаду (одновременное испускание электрона и антинейтрино или позитрона и нейтрино, а также поглощение электрона с испусканием нейтрино); гамма-распаду (испускание фотонов - электромагнитных волн высокой энергии).
Из известных химических элементов периодической системы Менделеева, которые встречаются на Земле, только для 75 имеются точно и общепризнанно установленные авторы их открывшие - обнаружившие и строго идентифицированные. Только при этих условиях - обнаружение и идентификация - признаётся факт открытия химического элемента.
В действительном открытии - выделение в чистом виде и изучении свойств - химических элементов, встречающихся в природе, участвовали учёные всего лишь девяти стран: Швеция (22 элемента), Англия (19 элементов), Франция (15 элементов), Германия (12 элементов). На Австрию, Данию, Россию, Швейцарию и Венгрию приходится открытие остальных 7 элементов.
Иногда указывают Испанию (платина) и Финляндию (иттрий - в 1794 году в шведском минерале из Иттербю финский химик Юхан Гадолин обнаружил оксид неизвестного элемента). Но платина, как благородный металл, была известна в самородном виде с древних времён - в чистом виде из руд платина была получена английским химиком У.Волластоном в 1803 году. Этот учёный более известен как открыватель минерала волластонита.
Металлический иттрий впервые получил в 1828 г. немецкий ученый Фридрих Велер.
Рекордсменом среди "охотников" за химическими элементами можно считать шведского химика К. Шееле - он обнаружил и доказал существование 6-ти химических элементов: фтора, хлора, марганца, молибдена, бария, вольфрама.
К достижениям в находках химических элементов этого учёного можно добавить ещё и седьмой элемент - кислород, но честь открытия которого он официально делит с английским учёным Дж. Пристли.
Второе место в открытии новых элементов принадлежит В.Рамзаю -
английскому или, точнее, шотландскому учёному: им открыты аргон, гелий, криптон, неон, ксенон. Кстати, открытие "гелия" очень оригинально. Это первое не "химическое" открытие химического элемента. Сейчас этот метод называется "Абсорбционная спектрофотометрия". Оно приписывается сейчас У.Рамзаю, но было сделано другими учёными. Так часто бывает.
18 августа 1868 года французский учёный Пьер Жансен, при полном солнечном затмении в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Он настроил спектроскоп таким образом, что спектр короны Солнца удалось наблюдать не только при затмении, но и в обычные дни. Он выявил наряду с линиями водорода - синей, зелено-голубой и красной - яркую жёлтую линию, первоначально принятую им за линию натрия. Жансен написал об этом во Французскую академию наук.
Впоследствии было установлено, что эта ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.
Через 27 лет после этого первоначального открытия гелий был обнаружен на Земле - в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому учёному-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия.
23 марта 1895 года Рамзай отправил сообщение о своём открытии гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло. Так и получилось название этого химического элемента. От древнегреческого наименования солнечного божества - Гелиос. Первое открытие сделанное спектральным методом. Абсорбционная спектроскопия.
Во всех случаях у Рамзая были соавторы: В.Крукс (Англия) - гелий; В. Рэлей (Англия) - аргон; М. Траверс (Англия) - криптон, неон, ксенон.
По 4 элемента обнаружили:
И. Берцелиус (Швеция) - церий, селен, кремний, торий;
Г. Деви (Англия) - калий, кальций, натрий, магний;
П. Лекок де Буабодран (Франция) - галлий, самарий, гадолиний, диспрозий.
На долю России приходится открытие только одного из природных элементов: рутения (44). Название этого элемента происходит от позднелатинского названия России - Ruthenia. Этот элемент открыл профессор Казанского университета Карл Клаус в 1844 году.
Карл-Эрнст Карлович Клаус был русским химиком, автором ряда трудов по химии металлов платиновой группы, первооткрывателем химического элемента рутения. Он родился в 11 (22) января 1796 - 12 (24) марта 1864) в Дерпте, старинном русском городе Юрьеве (ныне Тарту), в семье художника. В 1837 году защитил диссертацию на степень магистра и был назначен адъюнктом по кафедре химии в Казанском университете. С 1839 года стал профессором химии Казанского университета, а с 1852 года – профессором фармации Дерптского университета. В 1861 году стал Членом-корреспондентом Петербургской Академии наук.
То, что большинство известных в природе химических элементов, было открыто учёными Швеции, Англии, Франции и Германии, вполне понятно - в 18-19 веках, когда и были открыты эти элементы, именно в данных странах был наиболее высокий уровень развития химии и химической технологии.
Ещё любопытен вопрос: а женщины-учёные открывали химические элементы?
Да. Но немного. Это Мария Складовская-Кюри, открывшая в 1898 году вместе с мужем П.Кюри полоний (название дано в честь её родины Польши) и радий, Лиза Мейтнер, принимавшая участие в открытии протактиния (1917 год), Ида Ноддак (Такке), обнаружившая в 1925 году совместно с будущим мужем В.Ноддаком рений, и Маргарита Перей, за которой в 1938 году было официально признано открытие элемента франция и она стала первой женщиной, избранной во Французскую академию наук (!!!).
В современной таблице Менделеева имеется несколько элементов, помимо рутения, названия которых связанны с Россией: самарий (63) - от названия минерала самарскита, открытого русским горным инженером В.М.Самарским в Ильменских горах, менделеевий (101); дубний (105). История названия этого элемента любопытна. Впервые этот элемент был получен на ускорителе в Дубне в 1970 году группой Г.Н.Флёрова путём бомбардировки ядер 243Am ионами 22Ne и независимо в Беркли (США) в ядерной реакции 249Cf + 15N = 260Db + 4n.
Советские исследователи предложили назвать новый элемент нильсборием (Ns), в честь великого датского учёного Нильса Бора, американцы - ганием (Ha), в честь Отто Гана, одного из авторов открытия спонтанного деления урана.
Рабочая группа ИЮПАК в 1993 году сделала вывод, что честь открытия элемента 105 должна быть разделена между группами из Дубны и Беркли. Комиссия ИЮПАК в 1994 году предложила название жолиотий (Jl), в честь Жолио-Кюри. До этого элемент официально назывался латинским числительным - уннилпентиумом (Unp), то есть просто 105-м элементом. Символы Ns, На, Jl можно и сейчас видеть в таблицах элементов, изданных в прежние годы. Например, на ЕГЭ по химии 2013 года. Согласно окончательному решению ИЮПАК в 1997 году этот элемент получил название "дубний" - в честь российского центра по исследованиям в области ядерной физики, наукограда Дубны.
В Объединенном институте ядерных исследований Дубны в разное время были впервые синтезированы сверхтяжелые химические элементы с порядковыми номерами 113–118. Элемент под номером 114 был назван "флеровий" - в честь Лаборатории ядерных реакций им. Г.Н.Флёрова Объединённого института ядерных исследований, где и был синтезирован этот элемент.
За последние 50 лет Периодическая система Д.И. Менделеева пополнилась 17 новыми элементами (102–118), из которых в ОИЯИ синтезировано 9. В том числе в последние 10 лет – 5 наиболее тяжелых (сверхтяжелых) элементов, замыкающих периодическую таблицу…
Впервые 114-й элемент - с "магическим" числом протонов (магические числа - ряд натуральных чётных чисел, соответствующих количеству нуклонов в атомном ядре, при котором становится полностью заполненной какая-либо его оболочка: 2, 8, 20, 28, 50, 82, 126 (последнее число - только для нейтронов) - был получен группой физиков под руководством Ю.Ц.Оганесяна в Объединённом институте ядерных исследований (Дубна, Россия) с участием учёных из Ливерморской национальной лаборатории (Ливермор, США; коллаборацией Дубна-Ливермор) в декабре 1998 года путём синтеза изотопов этого элемента посредством реакции слияния ядер кальция с ядрами плутония. Название 114-го элемента было утверждено 30 мая 2012 года: "флеровий" (Flerovium) и символическое обозначение Fl. Тогда же был назван 116 элемент – "ливерморий" (Livermorium) – Lv (кстати, время жизни этого элемента – 50 миллисекунд).
В настоящее время синтез трансурановых элементов в основном проводится в четырех странах: США, России, Германии и Японии. В России новые элементы получают в Объединенном институте ядерных исследований (ОИЯИ) в Дубне, в США - в Национальной лаборатории Оук-Ридж в Теннеси и Национальной лаборатории Лоуренса в Ливерморе, в Германии - в Центре по изучению тяжелых ионов Гельмгольца (он же - Институт тяжелых ионов) в Дармштадте, в Японии - в Институте физико-химических исследований (RIKEN).
За авторство создания 113-го элемента давно шла борьба между Японией и российско-американской группой ученых. Японские ученые во главе с Косукэ Моритой синтезировали 113-й элемент в сентябре 2004 года, разогнав на ускорителе и столкнув цинк-30 и висмут-83. Им удалось зафиксировать три цепочки распада, соответствующие цепочкам рождения 113-го элемента в 2004, 2005 и 2012 годах.
Российские и американские ученые объявили о создании 113-го элемента в процессе синтеза 115-го элемента в Дубне в феврале 2004 года и предложили назвать его беккерелием. По имени выдающегося физика Антуана Анри Беккереляя (фр. Antoine Henri Becquerel; 15 декабря 1852 - 25 августа 1908) - французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности.
Наконец, в начале 2016 года в периодическую таблицу Менделеева официально добавлены названия четырёх новых химических элементов. Элементы с атомными номерами 113, 115, 117 и 118 верифицированы Международным союзом теоретической и прикладной химии (IUPAC).
Честь открытия 115-го, 117-го и 118-го элементов присуждена команде российских и американских ученых из Объединенного института ядерных исследований в Дубне, Ливерморской национальной лаборатории в Калифорнии и Окриджской национальной лаборатории в Теннесси.
До последнего времени эти элементы (113, 115, 117 и 118) носили не самые звучные названия унунтрий (Uut), унунпентий (Uup), унунсептий (Uus) и унуноктий (Uuo), однако в течение ближайших пяти месяцев первооткрыватели элементов смогут дать им новые, окончательные имена.
Открывателями 113-го элемента официально признаны ученые из японского Института естественных наук (RIKEN). В честь этого элемент рекомендовали назвать "японием". Право придумать названия остальным новым элементам предоставлено первооткрывателям, на что им отводилось пять месяцев, после чего их официально утвердит совет IUPAC.
115-й элемент предложено назвать "московием" в честь Подмосковья!
Свершилось! 8 июня 2016 года Международный союз теоретической и прикладной химии озвучил рекомендованные названия для 113-го, 115-го, 117-го и 118-го элементов таблицы Менделеева. Об этом сообщается на сайте союза.
Один из новых сверхтяжелых элементов таблицы Менделеева за номером 113 официально получил название "нихоний" и символ Nh. Соответствующее объявление сделал японский институт естественных наук "Рикэн", специалисты которого ранее открыли этот элемент.
Слово "нихоний" является производным от местного названия страны - "Нихон".
Международный союз теоретической и прикладной химии утвердил названия новым элементом за номерами 113, 115, 117 и 118 - нихоний(Nh), московий (Mc), тенессин (Ts) и оганессон (Og).
113-й элемент назван в честь Японии, 115-й - в честь Московской области, 117-й - по названию американского штата Теннеси, 118-й - в честь российского ученого академика РАН Юрия Оганесяна.
В 2019 году Россия и весь мир отмечают 150-летие открытия Дмитрием Ивановичем Менделеевым периодической таблицы и закона, послужившего основой современной химии.
В честь юбилея Генеральная ассамблея ООН единогласно приняла решение о проведении Международного года Периодической системы элементов Менделеева.
"Что дальше?" - спрашивает Юрий Оганесян - научный руководитель лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне, где были открыты последние пять элементов периодической таблицы, в том числе и элемент-118, оганесон.
"Понятно, что на этом таблица Менделеева не заканчивается и нужно попробовать получить 119-й и 120-й элементы. Но для этого придется совершить ту же технологическую революцию, которая помогла нам вырваться в лидеры в 1990-е годы, повысить интенсивность пучка частиц на несколько порядков и сделать детекторы настолько же более чувствительными", - подчеркивает физик.
К примеру, сейчас ученые получают один атом флеровия в неделю, обстреливая мишень триллионами частиц в секунду. Более тяжелые элементы (скажем, оганесон) удается синтезировать лишь раз в месяц. Соответственно, работа на нынешних установках потребует астрономически много времени.
Эти трудности российские исследователи рассчитывают преодолеть при помощи циклотрона ДЦ-280, запущенного в декабре прошлого года. Плотность вырабатываемого им пучка частиц в 10-20 раз выше, чем у предшественников, что, как надеются отечественные физики, позволит создать один из двух элементов ближе к концу года.
Первым, скорее всего, синтезируют 120-й элемент, так как калифорниевая мишень, необходимая для этого, уже была подготовлена в американской Национальной лаборатории в Ок-Ридже. Пробные пуски ДЦ-280, нацеленные на решение этой задачи, пройдут в марте этого года.
Ученые считают, что постройка нового циклотрона и детекторов поможет приблизиться к ответу на еще один фундаментальный вопрос: где перестает действовать периодический закон?"
"Есть ли разница между синтетическим и естественным элементом? Когда мы открываем их и вписываем в таблицу, там ведь не указано, откуда они взялись. Главное, чтобы они подчинялись периодическому закону. Но сейчас об этом, как мне кажется, уже можно говорить в прошедшем времени", - отмечает Оганесян.

    См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

    См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия

    - (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия

    Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

Все многообразие окружающей нас природы состоит из сочетаний сравнительно небольшого числа химических элементов. Так какова же характеристика химического элемента, и чем он отличается от простого вещества?

Химический элемент: история открытия

В различные исторические эпохи в понятие «элемент» вкладывался различный смысл. Древнегреческие философы в качестве таких «элементов» рассматривали 4 «стихии» – тепло, холод, сухость и влажность. Сочетаясь попарно они образовывали четыре «начала» всего на свете – огонь, воздух, воду и землю.

В XVII веке Р. Бойль указал на то, что все элементы носят материальный характер и их число может быть достаточно велико.

В 1787 году французский химик А. Лавуазье создал «Таблицу простых тел». В нее вошли все известные к тому времени элементы. Под последними понимались простые тела, которые не удавалось разложить химическими методами на еще более простые. Впоследствии выяснилось, что в таблицу вошли и некоторые сложные вещества.

К моменту, когда Д. И. Менделеев открыл периодический закон, было известно всего 63 химических элементов. Открытие ученого не только привело к упорядоченной классификации химических элементов, а также помогло предсказать существование новых, еще не открытых элементов.

Рис. 1. А. Лавуазье.

Что такое химический элемент?

Химическим элементом называют определенный вид атомов. В настоящее время известно 118 химических элементов. Каждый элемент обозначают символом, который представляет одну или две буквы из его латинского названия. Например, элемент водород обозначают латинской буквой H и формулой H 2 – первой буквой латинского названия элемента Hydrogenium. Все достаточно хорошо изученные элементы имеют символы и названия, которые можно найти в главных и побочных подгруппах Периодической системы, где все они расположены в определенном порядке.

Cуществует много видов систем, но общепринятой является Периодическая система химических элементов Д. И. Менделеева, которая является графическим выражением Периодического закона Д. И. Менделеева. Обычно используют короткую и длинную формы Периодической системы.

Рис. 2. Периодическая система элементов Д. И. Менделеева.

Что же является главным признаком, по которому атом относят к определенному элементу? Д. И. Менделеев и другие ученые-химики XIX века считали главным признаком атома массу как наиболее стабильную его характеристику, поэтому элементы в Периодической системе расположены в порядке возрастания атомной массы (за немногим исключением).

По современным представлениям, главным свойством атома, относящим его к определенному элементу, является заряд ядра. Таким образом, химический элемент – это вид атомов, характеризующихся определенным значением (величиной) части химического элемента – положительного заряда ядра.

Из всех существующих 118 химических элементов большую часть (около 90) можно обнаружить в природе. Остальные же получены искусственно с помощью ядерных реакций. Элементы 104-107 были синтезированы учеными-физиками в Объединенном институте ядерных исследований в городе Дубне. В настоящее время продолжаются работы по искусственному получению химических элементов с более высокими порядковыми номерами.

Все элементы делятся на металлы и неметаллы. Более 80 элементов относятся к металлам. Однако это деление условное. При определенных условиях некоторые металлы могут проявлять неметаллические свойства, а некоторые неметаллы – металлические свойства.

Содержание различных элементов в природных объектах колеблется в широких пределах. 8 химических элементов (кислород, кремний, алюминий, железо, кальций, натрий, калий, магний) составляют 99% земной коры по массе, все остальные – менее 1%. Большинство химических элементов имеют природное происхождение (95), хотя некоторые из них изначально были выведены искусственно (например, прометий).

Следует различать понятия «простое вещество» и «химический элемент». Простое вещество характеризуется определенными химическими и физическими свойствами. В процессе химического превращения простое вещество утрачивает часть своих свойств и входит в новое вещество в виде элемента. Например, азот и водород, входящие в состав аммиака, содержатся в нем не в виде простых веществ, а в виде элементов.

Некоторые элементы объединяются в группы, такие как органогены (углерод, кислород, водород, азот), щелочные металлы (литий, натрий, калий и т.д.), лантаноиды (лантан, церий и т.д.), галогены (фтор, хлор, бром и т.д.), инертные элементы (гелий, неон, аргон)

В 1869 году русский ученый Д.И. Менделеев разработал периодическую таблицу химических элементов, которая затем стала применяться в качестве универсальной и единственной системы такого рода во всем мире. Сегодня мало кто знает, что эта классификация, графически отражающая свойства элементов и их атомную массу, на самом деле является ключом к открытию множества удивительных фактов. Пришло время познакомиться с миром химии с новой стороны и узнать о том, чего практически никогда не рассказывают в школах и университетах!

Галлий: как наука помогает шутникам

Этот химический элемент, расположенный под 13 атомным номером и обозначаемый символом Ga (от лат. Gallium), представляет собой мягкий металл серого цвета. Хрупкое вещество было открыто химиком из Франции Полем Эмилем Лекоком де Буабодраном в 1875 году. Именно благодаря своему первооткрывателю и его родине элемент и получил свое современное название, ведь в переводе с латинского «Галлия» означает «Франция». Также существует версия, что в наименовании галлия ученый захотел скрыто увековечить свое имя. На латинском языке слово «Gallium» оказывается сходно по звучанию с «gallusom» – «петухом». Во французском же «петух» произносится как «le coq». Остается только сравнить это слово с фамилией Поля Эмиля – и вот уже теория не кажется такой неправдоподобной, пусть официально она и не была нигде задокументирована. Кстати, эта же птица является и символом государства!

Удивительные свойства данного химического элемента наиболее ярко демонстрируют себя при переходе из одного состояния в другое. Несмотря на то, что обычно металл находится в твердом состоянии, уже при нагревании до температуры в 30°С он начинает медленно плавиться. Что же это означает?

Теоретически из подобного материала можно вылепить, например, ложку, после чего передать ее своему коллеге. Озадаченное выражение лица приятеля окажется обеспечено, ведь столовый прибор начнет просто-напросто растворяться при соприкосновении с горячей жидкостью! К такому розыгрышу вполне могут прибегнуть изобретательные химики-лаборанты. Вот только от напитка придется отказаться – пусть галлий и практически безвреден для человеческого организма, все же возможные риски лучше исключить совершенно.

Почему кадмий использовался для борьбы с Годзиллой

И снова металл, но на этот раз – уже с порядковым атомным номером 48, мягкий, тягучий и отличающийся серебристо-серым цветом. Может менять состояния и подвергаться обработке деформированием (ковке). Именно из данного вещества изготавливались специальные наконечники на ракеты, с помощью которых военные боролись с удивительным Годзиллой в одном из фильмов про гигантского монстра-мутанта. Но почему же при написании сценария создатели решили отдать предпочтение именно этому химическому элементу?

Все дело заключается в том, что на самом деле данное вещество является смертельно связывающим и крайне токсичным – при проникновении в живой организм оно начисто уничтожает любое благоприятное действие белков, металлотионеина, аминокислот и ферментов, а также провоцирует возникновение злокачественных опухолей. Сначала происходит снижение активности всех ферментных систем, затем одно за другим начинают обнаруживаться:

  • общее ухудшение самочувствия;
  • рвота и судороги;
  • поражение центральной нервной системы, печени и почек;
  • нарушение фосфорно-кальциевого обмена;
  • анемия и разрушение костей скелета.

Именно эти свойства кадмия проявились в реальной жизни из-за того, что опасность элемента была недооценена ни властями, ни добывающими промышленниками. Случай, начавшийся в Японии еще в 1817 году, растянулся вплоть до наступления 20 века. В те времена о кадмии знали мало – его добывали и рассматривали как примесь цинка, от которой после очистки избавлялись путем сброса в реки. Разумеется, канцерогенные отходы сделали свое дело, и однажды врач, пришедший осмотреть жителей деревни, которая была расположена рядом с одной из таких быстрин, ужаснулся… Он сломал девушке запястье в попытке прощупать ее пульс! Выяснилось, что кадмий отравил злаки, ведь для их полива использовалась именно речная вода. Все необходимые минеральные вещества в организмах людей просто сворачивались, в результате чего их кости стали катастрофически хрупкими.

Добывающая организация признала страшную ошибку только в 1972 году, и выплатила компенсации пострадавшим и их родственникам – в общей сложности 178 жителям.

Как церковь внесла вклад в открытие «видов» воздуха

Удивительные факты о последнем элементе, кислороде, который в соединении с углеродом образует углекислый газ, будут неразрывно связаны с именем Джозефа Пристли. Этот скромный английский священник в действительности сделал множество открытий в газовой химии. Уже в детстве будущий служитель церкви обладал живым и незаурядным мышлением, которое однажды заставило его задаться вопросом: «Что остается в банке, когда в ней умирает паук?». Пристли понимал, что существу оказывается недостаточно воздуха (понятия «кислород» тогда еще не существовало). Но почему же его хватает, например, цветам, которые могут существовать в герметично закупоренных тарах куда дольше животных или насекомых?..

Тогда Пристли провел практический опыт, который сегодня считается начальной вехой в изучении фотосинтеза и входит во все учебники по естествознанию. Он поместил под стеклянный колпак мышь, свечу и зеленое растение, а также поставил конструкцию под естественный солнечный свет. Так ученому удалось установить, что животные не только не погибают, а продолжают благополучно существовать и дышать в атмосфере вырабатываемого цветком газа. Пристли сравнил результаты первого эксперимента с итогами второго, во время которого он поместил мышь под колпак с одной лишь горящей свечой, и установил, что здесь мышь попросту задыхается. Джозеф решил, что растения очищают, «освежают» воздух, в то время как позднее ученые научно доказали: они сами вырабатывают кислород в результате фотосинтеза. И все же первое практическое, пусть и не до конца точное разграничение химического элемента кислорода и соединения под названием «углекислый газ» произошло именно тогда – в далеком 1774 году.

Кислород, представленный в таблице Менделеева под атомным номером 8,относится к газам и характеризуется отсутствием вкуса, цвета и запаха. Этот неметалл регулярно восполняется наземной растительностью, на долю которой приходится до 30% его выработки, и морскими водорослями (до 70%). Он составляет около 45% от веса всей земной коры и 89% веса воды, а также всегда наблюдается там, где присутствуют живые организмы. Если в будущем человечеству удастся обнаружить планету, богатую кислородом, можно будет почти с абсолютной уверенностью заявить, что соседи во Вселенной найдены!

Все мы знаем, что водород наполняет нашу Вселенную на 75%. Но знаете ли вы, какие еще есть химические элементы, не менее важные для нашего существования и играющие значительную роль для жизни людей, животных, растений и всей нашей Земли? Элементы из этого рейтинга формируют всю нашу Вселенную!

10. Сера (распространенность относительно кремния – 0.38)

Этот химический элемент в таблице Менделеева значится под символом S и характеризуется атомным номером 16. Сера очень в природе.

9. Железо (распространенность относительно кремния – 0.6)

Обозначается символом Fe, атомный номер – 26. Железо очень часто встречается в природе, особенно важную роль оно играет в формировании внутренней и внешней оболочки ядра Земли.

8. Магний (распространенность относительно кремния – 0.91)

В таблице Менделеева магний можно найти под символом Mg, и его атомный номер – 12. Что самое удивительное в этом химическом элементе, так это то, что он чаще всего выделяется при взрыве звезд в процессе их преобразования в сверхновые тела.

7. Кремний (распространенность относительно кремния – 1)

Обозначается как Si. Атомный номер кремния – 14. Этот серо-голубой металлоид очень редко встречается в земной коре в чистом виде, но довольно распространен в составе других веществ. Например, его можно обнаружить даже в растениях.

6. Углерод (распространенность относительно кремния – 3.5)

Углерод в таблице химических элементов Менделеева значится под символом С, его атомный номер – 6. Самой знаменитой аллотропной модификацией углерода являются одни из самых желанных драгоценных камней в мире – алмазы. Углерод активно применяют и в других в промышленных целях более будничного назначения.

5. Азот (распространенность относительно кремния – 6.6)

Символ N, атомный номер 7. Впервые открытый шотландским врачом Дэниелом Рутерфордом (Daniel Rutherford), азот чаще всего встречается в форме азотной кислоты и нитратов.

4. Неон (распространенность относительно кремния – 8.6)

Обозначается символом Ne, атомный номер - 10. Не секрет, что именно этот химический элемент ассоциируется с красивым свечением.

3. Кислород (распространенность относительно кремния – 22)

Химический элемент под символом О и с атомным номером 8, кислород незаменим для нашего существования! Но это не значит, что он присутствует только на Земле и служит только для человеческих легких. Вселенная полна сюрпризов.

2. Гелий (распространенность относительно кремния – 3.100)

Символ гелия – He, атомный номер – 2. Он бесцветен, не имеет запаха и вкуса, не ядовит, и его точка кипения – самая низкая среди всех химических элементов. А еще благодаря ему шарики взмывают ввысь!

1. Водород (распространенность относительно кремния – 40.000)

Истинный номер один в нашем списке, водород находится в таблице Менделеева под символом Н и обладает атомным номером 1. Это самый легкий химический элемент периодической таблицы и самый распространенный элемент во всей изученной человеком Вселенной.