Что находится в ядре клетки. Ядро клетки: функции и структура

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

ЯДРО (в биологии) ЯДРО (в биологии)

ЯДРО́ (клеточное ядро), в биологии - обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Размеры от 1 мкм (у некоторых простейших) до 1 мм (в яйцах некоторых рыб и земноводных). Все организмы нашей биосферы как одноклеточные, так и многоклеточные, подразделяются на эукариот (см. ЭУКАРИОТЫ) - их клетки содержат ядро, и прокариот (см. ПРОКАРИОТЫ) , клетки которых не имеют морфологически оформленного ядра. Термин «ядро» (лат. nucleus) впервые применил Р. Броун (см. БРОУН Роберт (ботаник)) в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений.
Ядерная оболочка
Внутреннее пространство клеточного ядра отделено от цитоплазмы ядерной оболочкой, состоящей из двух мембран. Мембраны оболочки ядра сходны по строению с другими мембранными компонентами клетки и построены по тому же принципу: это тонкие липопротеидные пленки, состоящие из двойного слоя липидных молекул, в который встроены молекулы белков. Пространство между внутренней и внешней ядерными мембранами называется перинуклеарным. На поверхности внешней ядерной мембраны обычно располагается большое количество рибосом (см. РИБОСОМЫ) , и иногда удается наблюдать непосредственный переход этой мембраны в систему каналов гранулярной эндоплазматической сети клетки. Внутренняя ядерная мембрана связана с тонким волокнистым белковым слоем - ядерной ламиной, состоящей из белков ламинов. Густая сеть фибрилл ядерной ламины способна обеспечить целостность ядра, даже после растворения липидных мембран оболочки ядра в эксперименте. С внутренней стороны к ламине крепятся петли хроматина, заполняющего ядро.
Ядерная оболочка имеет отверстия диаметром около 90 нм, образующиеся засчет слияния внешней и внутренней ядерных мембран. Такие отверстия в оболочке ядра окружены сложными белковыми структурами, получившими название комплекса ядерной поры. Восемь белковых субъединиц, входящих в состав ядерной поры, располагаются вокруг перфорации ядерной оболочки в виде колец, диаметром около120 нм, наблюдаемых в электронный микроскоп с обеих сторон ядерной оболочки. Белковые субъединицы комплекса поры имеют выросты, направленные к центру поры, где иногда видна «центральная гранула» диаметром 10-40 нм. Размер ядерных пор и их структура стандартны для всех клеток эукариот. Число ядерных пор зависит от метаболической активности клеток: чем выше уровень синтетических процессов в клетке, тем больше пор на единицу площади поверхности клеточного ядра. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некое молекулярное сито, пропуская ионы и мелкие молекулы (сахара, нуклеотиды, АТФ и др.) пассивно, по градиенту концентрации, и осуществляя активный избирательный транспорт крупных молекул белков и рибонуклеопротеидов, то есть комплексов рибонуклеиновых кислот (РНК) с белками. Так, например, белки, транспортируемые в ядро из цитоплазмы, где они синтезируются, должны иметь определенные последовательности примерно из 50 аминокислот, (т. наз. NLS последовательности), «узнаваемые» комплексом ядерной поры. В этом случае комплекс ядерной поры, затрачивая энергию в виде АТФ, активно транслоцирует белок из цитоплазмы в ядро.
Хроматин
Клеточное ядро является вместилищем практически всей генетической информации клетки, поэтому основное содержимое клеточного ядра - это хроматин: комплекс дезоксирибонуклеиновой кислоты (ДНК) и различных белков. В ядре и, особенно, в митотических хромосомах, ДНК хроматина многократно свернута, упакована особым образом для достижения высокой степени компактизации. Ведь все длинные нити ДНК, общая длина которых составляет, например, у человека около 164 см, необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина - это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Всего существует 5 видов белков гистонов. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. е. укладку, фибрилл хроматина, которая достигает своих максимальнах значений при делении клетки в митотических или мейотических хромосомах. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности. Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла - такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств.
Репликация и транскрипция
Клетки эукариот содержат обычно несколько хромосом (от двух до нескольких сотен), которые теряют в ядре (в интерфазе, т. е. между митотическоми делениями) клетки свою компактную форму, разрыхляются и заполняют объем ядра в виде хроматина. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т. е. удвоение всей ДНК ядра, и хроматина становится в два раза больше. Белки, необходимые для этого процесса, поступают, конечно, из цитоплазмы через ядерные поры. Таким образом, клетка готовится к предстоящему клеточному делению - митозу, когда общее количество ДНК в ядре вернется к первоначальному уровню.
Реализация генетической информации, заключенной в ДНК в виде генов, начинается с транскрипции, т. е. с синтеза информационных РНК (и-РНК) - точных копий генов, по которым затем будут строиться в цитоплазме на рибосомах белки. Этот процесс проходит в различных точках в обьеме ядра, морфологически ничем не отличающихся от окружающего хроматина. Чаще всего удается наблюдать транскрипцию диффузного, т.е. деконденсированного хроматина.
Кроме хроматина, составляющего хромосомы, в ядрах эукариот обычно содержится одно или несколько ядрышек. Это плотные структуры, не имеющие собственной оболочки и представляющие собой скопления молекул другого типа РНК - рибосомной РНК (р-РНК) в комплексе с белками. Такие комплексы называют рибонуклеопротеидами (РНП). Ядрышки имеют стандартную морфологию и образуются в ядре после деления клетки вокруг постояннодействующих точек активного синтеза рибосомной РНК. Гены рибосомной РНК, в отличие от большинства других генов, кодирующих белки, содержатся в геноме в виде многочисленных копий. Эти копии, расположенные в молекуле ДНК тандемно, т. е. друг за другом, располагаются в определенных районах нескольких хромосом генома. Такие районы хромосом называют ядрышковыми организаторами. Морфологически в ядрышке с помощью электронного микроскопа можно выделить следующие 3 зоны: гомогенные компактные фибриллярные центры, содержащие ДНК ядрышковых организаторов; плотный фибриллярный компонент вокруг них, где идет транскрипция генов рибосомной РНК и массивный гранулярный компонент ядрышка, состоящий из частиц РНП - будущих рибосом. Эти гранулы РНП, образующиеся в ядрышке, транспортируются в цитоплазму и образуют рибосомы, осуществляющие синтез всех белков клетки. Третий основной тип клеточных РНК - мелкие транспортные РНК - транскрибируются в различных участках ядра и выходят в цитоплазму через ядерные поры. Там они, как известно, обеспечивают транспортировку аминокислот к рибосомам в процессе синтеза белков.
Ядерный белковый матрикс
Для осуществления процессов репликации, транскрипции, а также поддержания определенного положения хромосом в обьеме ядра существуют каркасные белковые структуры, называемае ядерным белковым матриксом. Такой матрикс состоит, по крайней мере из трех морфологических компонентов: периферического фиброзного слоя- ламины; внутреннего, или интерхроматинового матрикса ядра и матрикса ядрышка. Наблюдения показывают, что компоненты ядерного матрикса - это не жесткие застывшие структуры, они динамичны и могут сильно видоизменяться в зависимости от функциональных особенностей ядер. Показано, что белковый матрикс имеет множество точек прочного связывания с ДНК ядра, которая, в свою очередь, имеет специальные последовательности нуклеотидов, необходимые для этого.


Энциклопедический словарь . 2009 .

Смотреть что такое "ЯДРО (в биологии)" в других словарях:

    ЯДРО, в биологии, ограниченная мембраной часть большинства КЛЕТОК. Содержит ХРОМОСОМЫ. Т. к. ядро содержит генетический материал, оно является необходимым для поддержания клеточных процессов. В ядре производятся РНК, которые используются для… … Научно-технический энциклопедический словарь

    В биологии обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Типичное ядро отделено от окружающей цитоплазмы оболочкой, содержит ядрышко, хромосомы и кариоплазму. Размеры от 1 мкм (у некоторых простейших) до 1 мм… … Большой Энциклопедический словарь

    Ядро нечто центральное и самое важное, часто круглое. Это слово имеет различные значения в разных областях: Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле 4 Спорт … Википедия

    - (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… … Биологический энциклопедический словарь

    ядро и периферия - ЯДРО И ПЕРИФЕРИЯ пара взаимосвязанных понятий, вводимая для понимания сути классификаций. Ядро множества основная масса его элементов, компактная в пространстве признаков, а его периферия совокупность разрозненных элементов, проявляющих… … Энциклопедия эпистемологии и философии науки

Ядро (nucleus) клетки представляет систему генетической детерминации и регуляции процессов белкового синтеза клетки.

Структура ядра и его химический состав

В состав ядра входит хроматин, ядрышко, кариоплазма (нуклеоплазма), ядерная оболочка.

В клетке, которая делится, в большинстве случаев имеется одно ядро, но встречаются клетки, которые имеют два ядра (20% клеток печени двуядерные), а также многоядерные (остеокласты костной ткани).

¨Размеры - колеблятся от 3-4 до 40 мкм.

Каждый тип клетки характеризуется постоянным соотношением объема ядра к объему цитоплазмы. Такое соотношение носит название индекса Гертвинга. В зависимости от значения этого индекса клетки делятся на две группы:

    ядерные - индекс Гертвинга имеет большее значение;

    цитоплазматические - индекс Гертвинга имеет незначительные значения.

¨Форма - может быть сферической, палочковидной, бобовидной, кольцевидной, сегментированной.

¨Локализация - ядро всегда локализуется в определенном месте клетки. Например, в цилиндрических клетках желудка оно находится в базальном положении.

Ядро в клетке может находится в двух состояниях:

а) митотическом (во время деления);

б) интерфазном (между делениями).

В живой клетке интерфазное ядро имеет вид оптически пустого, обнаруживается только ядрышко. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в состояние паранекроза (пограничное состояние между жизнью и смертью). С этого состояния клетка может вернуться к нормальной жизни или погибнуть. После гибели клетки морфологически, в ядре различают следующие изменения:

    кариопикноз - уплотнение ядра;

    кариорексис - разложение ядра;

    кариолизис - растворение ядра.

Функции: 1) хранение и передача генетической информации,

2) биосинтез белка, 3) образование субъединиц рибосом.

Хроматин

Хроматин (от греч. сhroma - цвет краска) - это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

    гетерохроматин;

    эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин - это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин - это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

    активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

    неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах - вид барабанной палочки;

б) в эпителиальных клетках слизистой - вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).

При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

б) специальные хромосомные белки;

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10 -12 г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

¨Гистоновые белки (гистоны ) - щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

¨Негистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.

Генетическая информация эукариотической клетки хранится в особой двумембранной органелле - ядре. В нём находится более 90 % ДНК.

Строение

Понятие, что такое ядро в биологии и какие функции оно выполняет, укрепилось в научной среде только в начале XIX века. Однако впервые ядро в клетках лосося наблюдал натуралист Антони ван Левенгук ещё в 1670-х годах. Термин предложил ботаник Роберт Броун в 1831 году.

Ядро - наиболее крупный органоид клетки (до 6 мкм), который состоит из трёх частей:

  • двойной мембраны;
  • нуклеоплазмы;
  • ядрышка.

Рис. 1. Внутреннее строение ядра.

Ядро отделяется от цитоплазмы двойной мембраной, имеющей поры, через которые осуществляется избирательный транспорт веществ в цитоплазму и обратно. Пространство между двумя оболочками называется перинуклеарным. Внутренняя оболочка выстелена изнутри ядерным матриксом, который играет роль цитоскелета и обеспечивает структурную поддержку ядра. Матрикс содержит ядерную ламину, отвечающую за формирование хроматина.

Под мембранной оболочкой находится вязкая жидкость, которая называется нуклеоплазмой или кариоплазмой.
Она содержит:

  • хроматин, состоящий из белка, ДНК и РНК;
  • отдельные нуклеотиды;
  • нуклеиновые кислоты;
  • белки;
  • воду;
  • ионы.

В соответствии с плотностью скручивания хроматин может быть двух видов:

ТОП-3 статьи которые читают вместе с этой

  • эухроматин - деконденсированный (разрыхлённый) хроматин в неделящемся ядре;
  • гетерохроматин - конденсированный (плотно скрученный) хроматин в делящемся ядре.

Часть хроматина всегда находится в скрученном состоянии, часть - в свободном.

Рис. 2. Хроматин.

Обычно гетерохроматин называют хромосомой. Хромосомы хорошо видны в микроскоп при митотическом делении клетки. Совокупность признаков хромосом (размер, форма, количество) называется кариотипом. В кариотип входят аутосомы и гоносомы. Аутосомы несут информацию о признаках живого организма. Гоносомы определяют пол.

Внешняя оболочка переходит в эндоплазматическую сеть или ретикулум (ЭПР), образуя складки. На поверхности мембраны ЭПР находятся рибосомы, отвечающие за биосинтез белка.

Ядрышко представляет собой плотную структуру без мембраны. По сути это уплотнённый участок нуклеоплазмы с хроматином. Состоит из рибонуклеопротеидов (РНП). Здесь происходит синтез рибосомной РНК, хроматина и нуклеоплазмы. Ядро может содержать несколько мелких ядрышек. Впервые ядрышко было открыто в 1774 году, но его функции стали известны лишь к середине ХХ века.

Рис. 3. Ядрышко.

Эритроциты млекопитающих и клетки ситовидных трубок растений не содержат ядра. Клетки поперечнополосатых мышц содержат несколько небольших ядер.

Функции

Основными функциями ядра являются:

  • контроль всех процессов жизнедеятельности клетки, в том числе синтез белков;
  • синтез некоторых белков, рибосом, нуклеиновых кислот;
  • хранение генетического материала;
  • передача ДНК следующим поколениям при делении.
4.6 . Всего получено оценок: 244.

В каждой живой клетке протекает множество биохимических реакций и процессов. Чтобы контролировать их, а также регулировать многие жизненно важные факторы, необходима специальная структура. Что такое ядро в биологии? Благодаря чему оно эффективно справляется с поставленной задачей?

Что такое ядро в биологии. Определение

Ядро - необходимая структура любой клетки организма. Что такое ядро? В биологии это важнейший компонент каждого организма. Ядро можно обнаружить и у одноклеточных простейших, и у высокоорганизованных представителей эукариотического мира. Главная функция этой структуры - хранение и передача генетической информации, которая здесь же и содержится.

После оплодотворения яйцеклетки сперматозоидом происходит слияние двух гаплоидных ядер. После слияния половых клеток образуется зигота, ядро которой уже несет диплоидный набор хромосом. Это значит, что кариотип (генетическая информация ядра) уже содержит копии генов и матери, и отца.

Состав ядра

Какова характеристика ядра? Биология тщательно изучает состав ядерного аппарата, т. к. это может дать толчок в развитии генетики, селекции и молекулярной биологии.

Ядро - это двумембранная структура. Мембраны являются продолжением что необходимо для транспорта образованных веществ из клетки. Содержимое ядра называется нуклеоплазма.

Хроматин - основное вещество нуклеоплазмы. Состав хроматина разнообразен: здесь находятся в первую очередь нуклеиновые кислоты (ДНК и РНК), а также белки и многие ионы металлов. ДНК в нуклеоплазме расположена упорядочено в виде хромосом. Именно хромосомы при делении удваиваются, после чего каждый их наборов переходит в дочерние клетки.

РНК в нуклеоплазме чаще всего встречается двух типов: мРНК и рРНК. образуется в процессе транскрипции - считывания информации с ДНК. Молекула такой рибонуклеиновой кислоты позже покидает ядро и в дальнейшем служит матрицей для образования новых белков.

Рибосомальная РНК образуется в специальных структурах под названием ядрышки. Ядрышко построено из концевых участков хромосом, образованных вторичными перетяжками. Эта структура может быть видна в световой микроскоп в виде уплотненного пятнышка на ядре. Рибосомальные РНК, которые синтезируются здесь, также поступают в цитоплазму и далее вместе с белками образуют рибосомы.

Непосредственное влияние на функции оказывает состав ядра. Биология как наука изучает свойства хроматина для лучшего пониманию процессов транскрипции и деления клетки.

Функции ядра. Биология процессов в ядре

Первой и самой важной функцией ядра является хранение и передача наследственной информации. Ядро - уникальная структура клетки, т. к. в нем содержится большая часть генов человека. Кариотип может быть гаплоидный, диплоидный, триплоидный и так далее. Плоидность яда зависит от функции самой клетки: гаметы гаплоидные, а соматические клетки диплоидные. Клетки эндосперма покрытосеменных растений триплоидные, и, наконец, многие сорта посевных культур имеют полиплоидный набор хромосом.

Передача в цитоплазму из ядра происходит при образовании мРНК. В процессе транскрипции нужные гены кариотипа считываются, и в итоге синтезируются молекулы матричной или информационной РНК.

Также наследственность проявляется при делении клетки митозом, мейозом или амитозом. В каждом из случаев ядро выполняет свою определенную функцию. Например, в профазе митоза разрушается оболочка ядра и сильно компактизированные хромосомы попадают в цитоплазму. Однако в мейозе перед разрушением мембраны в ядре происходит кроссинговер хромосом. А в амитозе ядро вовсе разрушается и вносит небольшой вклад в процессе деления.

Кроме того, ядро косвенно участвует в транспорте веществ из клетки из-за непосредственной связи мембраны с ЭПС. Вот что такое ядро в биологии.

Форма ядер

Ядро, его строение и функции могут зависеть от формы мембраны. Ядерный аппарат может быть округлым, вытянутым, в виде лопастей и т. д. Часто форма ядра специфична для отдельных тканей и клеток. Одноклеточные организмы различаются по типу питания, жизненного цикла, а вместе с тем различаются и формы мембраны ядер.

Разнообразие в форме и размере ядра можно проследить на примере лейкоцитов.

  • Ядро нейтрофилов может быть сегментированным и не сегментированным. В первом случае говорят о подковообразном ядре, и такая форма характерна для молодых клеток. Сегментированное ядро - это результат образования нескольких перегородок в мембране, в результате чего образуется несколько частей, связанных между собой.
  • У эозинофилов ядро имеет характерную гантелевидную форму. В этом случае ядерный аппарат состоит из двух сегментов, связанных перегородкой.
  • Почти весь объем лимфоцитов занят огромным ядром. Лишь небольшая часть цитоплазмы остается по периферии клетки.
  • В железистых клетках насекомых ядро может иметь разветвленное строение.

Количество ядер в одной клетке может быть разным

Не всегда в клетке организма присутствует только одно ядро. Порой необходимо присутствие двух или более ядерных аппаратов для осуществления нескольких функций одновременно. И наоборот, некоторые клетки могут вовсе обходиться без ядра. Вот некоторые примеры необычных клеток, в которых ядер больше одного или оно вообще отсутствует.

1. Эритроциты и тромбоциты. Эти форменные элементы крови транспортируют гемоглобин и фибриноген соответственно. Чтобы одна клетка смогла вместить максимальное количество вещества, она утратила свое ядро. Характерна такая особенность не для всех представителей животного мира: у лягушек в крови находятся огромные по размерам эритроциты с ярко выраженным ядром. Это показывает примитивность данного класса в сравнении с более развитыми таксонами.

2. Гепатоциты печени. Эти клетки содержат в себе два ядра. Одно из них регулирует очистку крови от токсинов, а другое отвечает за образование гемма, который в последующем войдет в состав гемоглобина крови.

3. Миоциты поперечно-полосатой скелетной ткани. Мышечные клетки многоядерные. Это связано с тем, что в них активно проходит синтез и распад АТФ, а также сборка белков.

Особенности ядерного аппарата у простейших

Для примера рассмотрим два вида простейших: инфузории и амебы.

1. Инфузория-туфелька. Этот представитель одноклеточных организмов имеет два ядра: вегетативное и генеративное. Т. к. они отличаются как по функциям, так и по размерам, такая особенность получила название ядерного дуализма.

Вегетативное ядро отвечает за повседневную жизнедеятельность клетки. Оно регулирует процессы ее метаболизма. Генеративное ядро участвует в клеточном делении и в конъюгации - половом процессе, при котором происходит обмен генетической информацией с особями того же вида.

Заболевания

Многие генетические заболевания связаны с нарушениями в наборе хромосом. Вот список наиболее известных отклонений в генетическом аппарате ядра:

  • синдром Дауна;
  • сиддром Патау;
  • синдром Клайнфелтера;
  • синдром Шерешевского-Тернера.

Список можно продолжать, и каждая из болезней отличается порядковым номером пары хромосом. Также подобные заболевания часто затрагивают половые X и Y хромосомы.

Заключение

Ядро играет важную роль в Оно регулирует биохимические процессы, является хранилищем наследственной информации. Транспорт веществ из клетки, синтез белков также связаны с функционированием этой центральной структуры клетки. Вот что такое ядро в биологии.