Горючие газы. Краткие сведения о кислороде, пропан-бутане и ацетилене Горючие газы и их свойства

ПРИЛОЖЕНИЕ 7. Характеристика взрывоопасных и вредных газов, наиболее часто встречающихся в резервуарах и подземных сооружениях.

В подземных сооружениях наиболее часто обнаруживаются такие взрывоопасные и вредные газы: метан, пропан, бутан, пропилен, бутилен, окись (оксид) углерода, углекислый газ, сероводород и аммиак.

Метан CH 4 (болотный газ) — бесцветный горючий газ без запаха, легче воздуха. Проникает в подземные сооружения из почвы. Образуется при медленном разложении без доступа воздуха растительных веществ: при гниении клетчатки под водой (в болотах, стоячих водах, прудах) или разложении растительных остатков в залежах каменного угля. Метан является составной частью промышленного газа и при неисправном газопроводе может проникать в подземные сооружения. Не ядовит, но его присутствие уменьшает количество кислорода в воздушной среде подземных сооружений, что приводит к нарушению нормального дыхания при работах в этих сооружениях. При содержании метана в воздухе 5-15% по объему образуется взрывоопасная смесь.

Пропан C 3 H 8 , бутан C 4 H 10 , пропилен C 3 H 6 и бутилен C 4 H 8 — бесцветные горючие газы, тяжелее воздуха, без запаха, трудно смешиваются с воздухом. Вдыхание пропана и бутана в небольших количествах не вызывает отравления; пропилен и бутилен оказывают наркотическое воздействие.

Сжиженные газы с воздухом могут образовывать взрывоопасные смеси при следующем их содержании, % по объему:

Пропан………………… 2,3 — 9,5

Бутан…………………. 1,6 — 8,5

Пропилен………………. 2,2 — 9,7

Бутилен……………….. 1,7 — 9,0

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Окись углерода СО — бесцветный газ, без запаха, горючий и взрывоопасный, немного легче воздуха. Окись углерода чрезвычайно ядовита. Физиологическое воздействие окиси углерода на человека зависит от ее концентрации в воздухе и длительности вдыхания.

Вдыхание воздуха, содержащего окись углерода выше предельно допустимой концентрации, может привести к отравлению и даже к смерти. При содержании в воздухе 12,5-75% по объему окиси углерода образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки СО.

Углекислый газ CO 2 [двуокись (диоксид) углерода] — бесцветный газ, без запаха, с кисловатым вкусом, тяжелее воздуха. Проникает в подземные сооружения из почвы. Образуется в результате разложения органических веществ. Образуется также в резервуарах (баках, бункерах и др.) при наличии в них сульфоугля или угля вследствие его медленного окисления.

Попадая в подземное сооружение, углекислый газ вытесняет воздух, заполняя со дна пространство подземного сооружения. Углекислый газ не ядовит, но обладает наркотическим действием и способен раздражать слизистые оболочки. При высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода в воздухе.

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Сероводород H 2 S — бесцветный горючий газ, имеет запах тухлых яиц, несколько тяжелее воздуха. Ядовит, действует на нервную систему, раздражает дыхательные пути и слизистую оболочку глаз.

При содержании в воздухе сероводорода 4,3 — 45,5% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующие противогазы марок В, КД.

Аммиак NH 3 — бесцветный горючий газ с резким характерным запахом, легче воздуха, ядовит, раздражает слизистую оболочку глаз и дыхательные пути, вызывает удушье. При содержании в воздухе аммиака 15-28% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки КД.

Водород H 2 — бесцветный горючий газ без вкуса и запаха, значительно легче воздуха. Водород — физиологически инертный газ, но при высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода. При соприкосновении кислотосодержащих реагентов с металлическими стенками емкостей, не имеющих антикоррозийного покрытия, образуется водород. При содержании в воздухе водорода 4-75% по объему образуется взрывоопасная смесь.

Кислород O 2 — бесцветный газ, без запаха и вкуса, тяжелее воздуха. Токсическими свойствами не обладает, но при длительном вдыхании чистого кислорода (при атмосферном давлении) наступает смерть вследствие развития плеврального отека легких.

Кислород не горюч, но является основным газом, поддерживающим горение веществ. Высокоактивен, соединяется с большинством элементов. С горючими газами кислород образует взрывоопасные смеси.

Горючие газы

Для образования высокотемпературного пламени, применяемого при газопламенной обработке, используются различные горючие газы и пары горючих жидкостей. В большинстве случаев это предельные углеводороды – органические соединения углерода и водорода или смеси различных углеводородов.

Ацетилен получил наибольшее применение из-за наиболее высокой температуры пламени, образующегося при сгорании ацетилена в кислороде. Это единственный газ, горение которого возможно при отсутствии кислорода (или окислителя вообще).

Для работы ацетилен используется в двух видах – в растворенном (в баллонах) либо в газообразном (из ацетиленовых генераторов). Растворенный ацетилен – это газообразный ацетилен, растворенный в ацетоне. Преимущества этого состояния – безопасность проведения работ.

Кроме ацетилена при сварке и резке металлов используют и другие, более дешевые и менее дефицитные газы-заменители ацетилена (горючие газы и пары горючих жидкостей).

Горючие газы-заменители ацетилена подразделяются на две основные группы: сжимаемые и сжиженные .

К сжимаемым газам относятся водород, метан и такие много многокомпонентные газы, как природный, коксовый, городской и нефтяной.

К сжиженным газам относятся пропан, бутан и их смеси.

Сжимаемыми или сжатыми газами-заменителями ацетилена называются такие газы, которые при обычных условиях хранения и транспортировки не переходят в жидкое состояние ни при каких давлениях. Следуя этому определению, к сжимаемым можно отнести газы, критическая температура которых ниже встречающейся на практике температуры воздуха, ниже примерно –40 °С (ацетилен под это определение не подходит, так как его критическая температура равна 35,7 °С).

Газы-заменители используются в тех случаях, когда для осуществления процессов газопламенной обработки не требуется подогревающее пламя с очень высокой температурой. К таким процессам относятся сварка легкоплавких металлов (алюминий, магний и их сплавы, свинец), пайка высоко- и низкотемпературными припоями, поверхностная закалка, сварка тонкой стали, кислородная разделительная и поверхностная резка. Наиболее широкое применение газов-заменителей связано с кислородной разделительной резкой, при выполнении которой температура подогревающего пламени влияет лишь на продолжительность предварительного нагрева металла. Поэтому для резки могут быть использованы все газы-заменители, у которых температура пламени при сгорании в смеси с кислородом не ниже 2000 °С, а удельная теплота сгорания не менее 10 МДж/м 3 .

Применение местных дешевых газов вместо ацетилена значительно снижает стоимость газопламенной обработки и упрощает организацию работ.

Использование газов-заменителей не ухудшает качество сварки и резки металлов; применение их дает высокую чистоту кромок при резке металлов малых толщин. При сварке температура пламени должна примерно в два раза превышать температуру плавления металлов, поэтому газы-заменители, температура пламени которых ниже, чем у ацетилена, необходимо использовать для сварки металлов с более низкой температурой плавления, чем у сталей.

Выбор горючего газа зависит от его теплотворной способности.

Низшей теплотворной способностью (низшей теплотой сгорания) газа называется количество теплоты, получаемое при полном сгорании 1 м 3 или 1 кг горючего газа или жидкости. Чем выше теплотворная способность газа, тем меньше его расход при сварке и резке металлов, и тем оно более пригодно для газопламенной обработки. Для полного сгорания одинакового объема различных горючих газов требуется различное количество кислорода, от этого зависит эффективная мощность пламени.

Эффективной мощностью пламени называется количество теплоты, вводимой в нагреваемый металл в единицу времени.

Выражает тепловую эффективность газов-заменителей ацетилена. Он представляет собой отношение расхода газа-заменителя к расходу ацетилена при одинаковом тепловом воздействии на металл:

Этот коэффициент может быть также определен, как отношение теплотворной способности ацетилена к теплотворной способности газа-заменителя ацетилена:

ЛИТЕРАТУРА

  • Основы сварочного дела / В.Г. Геворкян. – М.: Высшая школа, 1991. – 239 с.
  • Газосварщик / Под ред. В.В. Шапкина. – СПб.: Политехника, 2003. – 354 с.
  • Сварка и резка в промышленном строительстве / Под ред. Б.Д. Малышева. – М.: Стройиздат, 1980. – 782 с.
  • Сварка, резка, пайка металлов – М.: Аделант, 2003. – 192 с.
  • Газовая сварка / В.Г. Лупачев. – Мн.: Высшая школа, 2001. – 400 с.
  • Газовая сварка и резка металлов / И.И. Соколов. – М.: Высшая школа, 1986. – 304 с.
  • Справочник молодого газосварщика и газорезчика / Д.З. Амигуд. – М., Высшая школа, 1974. 207 с.
  • Сварка в машиностроении. Т.1 / Под ред. Н.А. Ольшанского. 1978. 504 с.
  • Газопламенная обработка металлов с использованием газов-заменителей ацетилена / А.К. Нинбург. М., Машиностроение, 1976. – 152 с.
  • Газопламенная обработка металлов / Г.В. Полевой, Г.К. Сухинин. – М.: Академия, 2005. – 336 с.

При газовой сварке и резке нагрев металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле, встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность, образуя соединения со всеми химическими элементами, кроме инертных газов (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. Кислород способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, водород, закись азота и др. Кислород получают разделением воздуха на кислород и азот методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при аргонодуговой сварке непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту сварки кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм3 жидкого кислорода при испарении дает 860 дм3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по ГОСТ 5583-78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода.

weldering.com

Кислород технический газообразный

В газовой сварке кислород является незаменимым дополнительным материалом, который обеспечивает высокую температуру горения пламени, чтобы можно было расплавить металл нужной толщины. Он применяется как основная температурная сила, в то время как другие газы имеют защитную функцию. Кислород технически не имеет цвета и запаха. Он не горючий сам по себе, но при взаимодействии с другими веществами существенно повышает температуру горения. Он не взрывоопасен, как многие другие из этой области. Это доступное и относительно недорогое вещество. Существует несколько технических разновидностей, которые отличаются содержанием примесей, их объемом и количеством. Главным показателем качества является объем чистого газа.

Технический кислород в баллонах

Даже с примесями газ сохраняет высокую химическую активность. Он образует массу химических соединений, которые встречаются на Земле. Инертные газы не взаимодействуют с ним для образования соединений. Золото, серебро, платина и прочие благородные металлы также бесследно переносят его воздействия. Хранится кислород чаще всего в жидком виде, так как это более компактно, удобно и экономно. Зачастую перевод его в газообразное состояние начинается уже на месте использования.

Область применения при сварке

Кислород технический газообразный находит очень широкое применение при сварке в среде защитных газов. Вне зависимости от того, какой основной защитный газ, вторым веществом, которое подается в горелку, практически всегда является кислород. Его можно встретить в строительстве, где создаются металлоконструкции и каркасы для будущих зданий. Также он является обязательным в каждой сварочной мастерской. Используется газ при ремонте труб, тонких металлических изделий, в ремонтных мастерских, на производстве в сборочных цехах и так далее.

Наиболее активно кислород применяется при резке металла. Здесь вещество подается в горелку под большим давлением, что дает длинную и мощную струю. Это позволяет прорезать металлические изделия на большую толщину. Края при таком выжигании получаются довольно ровными.

Виды технического кислорода

Кислород технический газообразный производится по ГОСТ 5583-65. Согласно данному стандарту выделяют два основных сорта, которые применяются в промышленности. Естественно, что есть и другие, более загрязненные варианты, которые могут использоваться в частной сфере, но к стандартам серьезных производственных работ, где на соединения возлагается высокая ответственность, они не имеют отношения. Выделяют первый и второй сорт газа с различными техническими характеристиками.

Характеристики марок газообразного кислорода

Несмотря на то, что оба сорта применяются практически в одной и той же сфере и во многих случаях являются взаимозаменяемыми, иногда для сварки требуется исключительно первый сорт. Отличия в характеристиках у них также не принципиально значительные, как и отличия в составе. Здесь приведены основные данные по каждому из вариантов:

Характеристики марок жидкого технического кислорода

Жидкий кислород имеет бледно-синий цвет. Благодаря этому поставляется кислород в баллонах синего цвета. Жидкость относится к мощным парамагнетикам. Удельная плотность данного материала составляет 1,141 г/см кубический. Жидкость обладает умеренно криогенными свойствами. Точка замерзания ее составляет -222,65 градусов Цельсия. Кипеть она начинает уже при температуре -182,96 градусов Цельсия. Получение данного вещества в промышленной среде производится путем фракционной перегонке воздуха.

Техническое обозначение

Главным стандартом, по которому производится технический кислород, является ГОСТ 5583-78. Данный стандарт распространяется как на медицинский, так и на технический кислород. Получение газа происходит из атмосферного воздуха, для чего используется низкотемпературная ректификация, или при помощи электролиза воды. Здесь указан состав, допустимое наличие и соотношение примесей для каждого сорта. Также имеются правила эксплуатации и прочие важные данные. Для применения на официальных предприятиях именно этот ГОСТ является основным.

Инструкция по применению кислорода технического при сварке

Перед началом сварки нужно проверить баллон. На нем не должно быть масла и прочих загрязнений, так как это может привести к возгоранию и несчастному случаю. Баллон должен находиться в вертикальном положении и быть хорошо закрепленным, чтобы не упал при передвижениях сварщика.

Расстояние от баллона до источника пламени не должно быть менее 5 метров.»

Перед началом сварки сначала пускается защитный газ. Разобравшись, для чего нужен кислород, стоит понимать, что он существенно добавляет температуру горения и для проверки работоспособности горелки, а также для прогревания деталей, его применение может оказаться лишним. Когда уже начинается непосредственное сваривание. Тогда стоит пускать газ согласно параметрам сварки для конкретного случая, в зависимости от заготовки.

Меры безопасности

Чтобы во время использования не случилось несчастного случая, следует придерживаться определенных правил, которые смогут снизить все опасности к минимуму. К основным относятся следующие меры безопасности:

  • Не стоит допускать концентрацию газа в помещении свыше 23%, так как это может привести к повышенной опасности возникновения пожара;
  • Несмотря на то, что кислород является не горючим веществом, он сильно влияет на другие элементы, так что при работе с ним нужно использовать только определенный круг разрешенных материалов;
  • Если возникает контакт с масляными субстанциями, то они практически мгновенно окисляются, что может стать причиной взрыва или пожара;
  • Категорически запрещается использовать баллоны, где ранее ранился кислород, для других горючих веществ;
  • Во время перевозки нужно исключить вероятность ударов, падения и других факторов повреждения.
Заключение

Физические и химические свойства кислорода делают его уникальным газом для сварочной области. Если защитные газы имеют аналоги и могут заменяться, в случае необходимости, то этот нечем заменить. Использование имеет свои особенности, связанные с техникой безопасности, но это не столь страшно, как при использовании ацетилена и прочих газов.

svarkaipayka.ru

Для получения сварочного пламени высокой температуры сжигают газ или пары горючей жидкости в чистом кислороде. Если сгорание горючего будет происходить не в кислороде, а в воздухе, где кислород составляет 7в часть по объему, то температура пламени получится значительно ниже.

Кислород при атмосферном давлении и обычной температуре представляет собой бесцветный газ, не имеющий запаха. Он тяжелее воздуха. При атмосферном давлении и температуре 0°С 1 м3 кислорода весит 1,43 кг.

Технический кислород получают из воздуха на кислородных заводах и доставляют к месту сварки, как правило, в сжатом виде в стальных баллонах под давлением 150ат.

Кислород может также подводиться к месту сварочных работ по трубопроводу от кислородной станции под давлением от 5 до 30ат.

При температуре минус 183° С и атмосферном давлении кислород превращается в голубоватую, легко испаряющуюся жидкость. 1 л жидкого кислорода при испарении дает 790 л, или 0,79 м\ газообразного кислорода при атмосферном давлении и температуре 0°С.

Жидкий кислород хранят и транспортируют в специальных сосудах (танках), хорошо изолированных от тепла окружающей среды.

При использовании жидкого кислорода для сварки и резки его предварительно превращают в газ, испаряя в особых аппаратах, называемых газификаторами.

Горючие газы и горючие жидкости образуют в соединении с кислородом взрывчатые смеси. Жир и масло при контакте со сжатым кислородом могут самовоспламеняться. С целью предохранения от возможных несчастных случаев вся кислородная аппаратура подвергается тщательному обезжириванию. В процессе работы необходимо строго следить, чтобы масло и жир не могли попасть на детали кислородной аппаратуры.

electrowelder.ru

Газ для сварки – что обеспечивает такую мощь пламени?

Видов сварки существует множество. Деление построено на способе получения высокотемпературной сварочной ванны (вида энергии). Например, сварки электрической дугой, ультразвуком, газовым пламенем и другие. Такая горелка может резать и сваривать любые металлы. Края свариваемых металлических деталей буквально расплавляются и, соединяясь, составляют уже новую единую структуру в месте сплава, называемого сварным швом.

К сварочным газам относят, в первую очередь, ацетилен для сварки, выделяемый в результате реакции с водой карбида кальция. Смешиваясь с кислородом, он позволяет получать температуру пламени свыше трех тысяч градусов.

Также сварочными считаются пропаны, бутаны, сжиженные МАФы (новые газы, сменившие ацетилен), бензолы, керосины и другие. Важной особенностью применения сварочных газов будет обязательное присутствие кислорода, как катализатора горения. Причем от качества (чистоты) подаваемого в горелку кислорода зависит и развиваемая температура.

Газовая смесь для сварки с применением технически чистого кислорода дает очень интенсивное и полное сгорание самой смеси или испарений горючих веществ, поскольку обеспечивает очень высокие температуры горения. Количество кислорода в пламени определит его окислительные или восстановительные свойства.

С другой стороны, использование технического (чистого) кислорода требует специальных баллонов для его хранения и подачи. В смеси с таким кислородом некоторые газы или составы могут оказаться взрывоопасны (вследствие чрезвычайно высокой скорости их сгорания в таком катализаторе).

Часто они могут и сами по себе быть опасными из-за своей токсичности. Например, ацетилены, дицианы и т.п.

Применение же кислорода, содержащегося в атмосферном воздухе, делает сварочные газовые смеси менее эффективными. Их сгорание замедляется, что резко снижает температуру пламени. Причина в том, что в воздухе кислород составляет не более пятой его части, в большей степени присутствуют другие газы, тот же азот, например.

Помимо сказанного, сварка в условиях использования атмосферного кислорода часто не дает требуемой геометрии соединительного шва, изменяет свойства металла в этой зоне, что в конечном итоге влияет на качество соединения.

Технические газы используются не только в сварках. Широко применяются также защитные газы для сварки электрической дуговой и пр. Применение различных инертных (гелий, аргон) или активных (азот, СО2, водород, кислород) газов в качестве защитной среды для ванны сварочного расплава значительно улучшает качество результата, увеличивает скорость выполнения работ, позволяет получать нужные параметры шва и т.д.

Принцип сварки в среде защитных газов прост. Нужный состав подается в зону действия дуги через сопло специальной горелки под давлением, создавая эту самую защитную среду. На таком принципе построены популярные сварки на полуавтоматах.

Такая сварка доступна не только в заводских условиях, ее широко применяют в мастерских и даже в частных гаражах. Чаще всего газ для сварки полуавтоматом представляет смесь инертного и углекислого (в различных пропорциях). Из инертных более применимы гелий и аргон. В практике принято использование аргона, поэтому в составе и присутствуют СО2 и аргон.

Вообще инертный газ для сварки нужен в качестве защиты расплава ванны от внешнего воздействия воздуха, а также в случае необходимости качественного проведения сварочных работ по нержавеющим сталям, титану и сплавам из него, цветным металлам (никелю, меди, алюминию и сплавам) и др. При этом электрод может быть любым: классическим плавящимся, не меняющим своей формы и структуры (служащим для создания дуги) и т.п.

На выбор нужного для сварки газа влияет то, какой металл используется в работе. Та же смесь СО2 и аргона при сварках стальных элементов содержит больше углекислой составляющей (около 18%). А при сваривании нержавеющих сталей преобладает аргон (98%), СО2 составляет только два процента.

Таким образом, какой газ используют для сварки, определяется металлом, его маркой, необходимыми свойствами шва, видами сварочного оборудования, требованиями к химическому составу и даже форме швов, условиями проведения работ и т.д.

Для процессов газовой сварки и резки могут быть применены различные горючие газы, при сгорании которых в смеси с техническим кислородом температура газового пламени превышает 2000 °С. По химическому составу они, за исключением водорода, представляют собой или углеводородные соединения, или смеси различных углеводородов.

Для газопламенной обработки наибольшее распространение получил ацетилен (С 2 Н 2), при сгорании, в кислороде которого образуется пламя с более высокой температурой, чем при сгорании других горючих газов - заменителей ацетилена.

Ацетилен

Ацетилен представляет собой углеводород ненасыщенного ряда. Его химическая формула С 2 Н 2 , структурная формула Н-С = С-Н. При атмосферном давлении и нормальной температуре ацетилен - бесцветный газ. Технический ацетилен вследствие присутствия в нем примесей имеет резкий специфический запах. При 20 °С и 0,1 МПа плотность ацетилена р = 1,09 кг/м 3 . При атмосферном давлении ацетилен сжижается при температуре -82,4...-83,б °С.

Полное сгорание ацетилена происходит по реакции

т. е. для полного сгорания 1 объема ацетилена требуется 2,5 объема кислорода. Высшая теплота сгорания ацетилена при 0 °С и 0,1 МПа (2 В = 58660 кДж/м 3 . Теплота реакции сгорания ацетилена Q слагается из теплоты реакции распада ацетилена и суммы теплоты первичных реакций сгорания углерода и водорода.

Распад ацетилена происходит по реакции

Теплота распада Qq = 225,8 кДж/моль или Qq = 8686 кДж/кг.

Важным параметром сварочного пламени помимо его температуры является также интенсивность горения, под которой понимается произведение нормальной скорости горения на теплоту сгорания смеси. Данные об интенсивности горения ацетилена и некоторых других горючих приведены в табл. 2.1. Ацетилен обладает наибольшей интенсивностью горения по сравнению с другими газами, используемыми при газопламенной обработке.

Температура самовоспламенения ацетилена лежит в пределах 240-630 °С и зависит от давления и присутствия в ацетилене различных веществ. Повышение давления существенно снижает температуру самовоспламенения ацетилена. Присутствие в ацетилене частиц других веществ увеличивает поверхность контакта и тем понижает температуру самовоспламенения.

При сжатии ацетилена в компрессоре до давления 2,9 МПа, если температура в конце сжатия не превышает 275 °С, самовоспламенения ацетилена не происходит. Это позволяет наполнять баллоны ацетиленом с целью его длительного хранения и транспортирования. С повышением давления температурный предел начала процесса полимеризации понижается (рис. 2.1).

Практически при использовании ацетилена допустим нагрев его до следующих температур в зависимости от давления: при давлении 0,1 МПа до 300°С, придавлении 0,25 МПа до 150-180°С, при более высоких давлениях до 100 °С.

Один из важных показателей взрывоопасности горючих газов и паров - энергия зажигания. Чем меньше эта величина, тем взрывоопаснее данное вещество. Энергия зажигания кислородно-газовых смесей в 100 раз меньше, чем воздушно-газовых. Ацетилен имеет наименьшую энергию зажигания и в отношении взрывоопасности подобен водороду.

Рис. 2.1.

Таблица 2.1

Интенсивность горения газов

Присутствие паров воды сильно понижает способность ацетилена к самовоспламенению от случайных источников нагрева и взрывчатому распаду. В связи с этим в ацетиленовых генераторах, где ацетилен всегда насыщен парами воды, предельное давление действующими нормами установлено: избыточное 0,15 МПа, абсолютное 0,25 МПа.

При атмосферном давлении смесь ацетилена с воздухом взрывоопасна при содержании в ней 2,2% ацетилена и более; смесь с кислородом - 2,8% ацетилена и более. Верхнего предела взрываемости для смесей ацетилена с воздухом и кислородом не существует, так как взрываться, способен и чистый ацетилен при достаточной энергии зажигания.

Основным способом получения ацетилена является переработка карбида кальция. Этот способ довольно громоздок, дорог и требует затраты большого количества электроэнергий. Получение ацетилена из природного газа на 30-40% дешевле, чем из карбида кальция. Пиролизный ацетилен, используемый для сварки и резки, накачивают в баллоны с пористой массой, пропитанной ацетоном, по свойствам он не отличается от ацетилена, получаемого из карбида кальция.

Не вступают в химическое взаимодействие с металлами и практически не растворяются в металлах

Аргон (Ar) - бесцветный, без запаха, негорючий, неядовитый газ, почти в 1,5 раза тяжелее воздуха. В металлах нерастворим как в жидком, так и в твердом состояниях. Выпускается ( -79) двух сортов: высшего и первого.

В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.

В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.

Гелий (Не) - бесцветный газ, без запаха, неядовитый, значительно легче воздуха и аргона. Выпускается ( -75) двух сортов: высокой чистоты (до 99,985 %) и технический (99,8%).

Используется реже, чем аргон, из-за его дефицитности и высокой стоимости. Однако при одном и том же значении тока дуга в гелии выделяет в 1,5 - 2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительному увеличению скорости сварки.

Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.

Азот (N 2) - газ без цвета, запаха п вкуса, неядовитый. Используется только для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. Выпускается ( -74) четырех сортов: высшего - 99,9% азота; 1-го - 99,5%; 2-го - 99,0%; 3-го - 97,0%.

Активные

Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие

Кислород (О 2) - газ без цвета, запаха и вкуса. Негорючий, но активно поддерживающий горение. Технический газообразный кислород (ГОСТ5583-78) выпускается трех сортов: 1-й сорт - 99,7% кислорода; 2-й - 99,5%; 3-й - 99,2%. Применяется только как добавка к инертным и активным газам.

Углекислый газ (СО 2) - бесцветный, со слабым запахом, с резко выраженными окислительными свойствами, хорошо растворяется в воде. Тяжелее воздуха в 1,5 раза, может скапливаться в плохо проветриваемых помещениях, в колодцах, приямках. Выпускается ( -85) трех сортов: высший-99,8% СО 2 , 1-й-99,5% и 2-й-98,8%. Двуокись углерода 2-го сорта применять не рекомендуется. Для снижения влажности СО 2 рекомендуется установить баллон вентилем вниз и через 1-2 ч открыть вентиль на 8-10 с для удаления воды. Перед сваркой из нормально установленного баллона выпускают небольшое количество газа, чтобы удалить попавший внутрь воздух.

В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.

Газовые смеси

Служат для улучшения процесса сварки и качества сварного шва

Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

Смесь аргона и углекислого газа. Рациональное соотношение - 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.

Смесь аргона, углекислого газа и кислорода - трехкомпонентная смесь обеспечивает высокую стабильность процесса и позволяет избежать пористости швов. Оптимальный состав: 75% аргона, 20% углекислого газа и 5% кислорода. Применяется при сварке углеродистых, нержавеющих и высоколегированных конструкционных сталей.